Project description:When females mate promiscuously, female sperm storage provides scope to bias the fertilization success towards particular males via the non-random acceptance and utilization of sperm. The difficulties observing post-copulatory processes within the female reproductive tract mean that the mechanisms underlying cryptic female choice remain poorly understood. Here, we use zebra finches Taeniopygia guttata, selected for divergent sperm lengths, combined with a novel technique for isolating and extracting sperm from avian sperm storage tubules (SSTs), to test the hypothesis that sperm from separate ejaculates are stored differentially by female birds. We show that sperm from different inseminations enter different SSTs in the female reproductive tract, resulting in almost complete segregation of the sperm of competing males. We propose that non-random acceptance of sperm into SSTs, reflected in this case by sperm phenotype, provides a mechanism by which long sperm enjoy enhanced fertilization success in zebra finches.
Project description:Fast moving animals depend on cues derived from the optic flow on their retina. Optic flow from translational locomotion includes information about the three-dimensional composition of the environment, while optic flow experienced during a rotational self motion does not. Thus, a saccadic gaze strategy that segregates rotations from translational movements during locomotion will facilitate extraction of spatial information from the visual input. We analysed whether birds use such a strategy by highspeed video recording zebra finches from two directions during an obstacle avoidance task. Each frame of the recording was examined to derive position and orientation of the beak in three-dimensional space. The data show that in all flights the head orientation was shifted in a saccadic fashion and was kept straight between saccades. Therefore, birds use a gaze strategy that actively stabilizes their gaze during translation to simplify optic flow based navigation. This is the first evidence of birds actively optimizing optic flow during flight.