Project description:<p>Viral studies of Drosophila melanogaster typically involve virus injection with a small needle, causing post-injury a wounding/wound healing response, in addition to the effects of viral infection. However, the metabolic response to the needle injury is understudied, and many viral investigations neglect potential effects of this response. Furthermore, the wMel strain of the endosymbiont bacterium Wolbachia pipientis provides anti-viral protection in Drosophila. Here we used NMR-based metabolomics to characterise the acute wounding response in Drosophila and the relationship between wound healing and the Wolbachia strain wMel. The most notable response to wounding was found on the initial day of injury and lessened with time in both uninfected and Wolbachia infected flies. Metabolic changes in injured flies revealed evidence of inflammation, Warburg-like metabolism and the melanisation immune response as a response to wounding. In addition, at five days post injury Wolbachia infected injured flies were metabolically more similar to the uninjured flies than uninfected injured flies were at the same time point, indicating a positive interaction between Wolbachia infection and wound healing. This study is the first metabolomic characterisation of the wound response in Drosophila and its findings are crucial to the metabolic interpretation of viral experiments in Drosophila in both past and future studies.</p>
Project description:Transcriptional profiling of 3 day old virgin male and female adults comparing control male Drosophila melanogaster (MDM) versus male D sechellia (MDS) and comparing control female Drosophila melanogaster (FDM) versus female D sechellia (FDS). Goal was to determine why D sechellia is tolerant to octanoïc acid, the major toxic compound of Morinda citrifolia fruit
Project description:Fertility depends on the progression of complex and coordinated postmating processes within the extracellular luminal environment of the female reproductive tract (FRT). To achieve a more comprehensive level of knowledge regarding female-derived proteins available to interact with the ejaculate, we utilized semiquantitative mass spectrometry-based proteomics to study the composition of the FRT tissue and, separately, the luminal fluid, before and after mating in Drosophila melanogaster. Our approach leveraged whole-fly isotopic labelling to delineate between female proteins and those transferred from males in the ejaculate. The dynamic mating-induced proteomic changes in the extracellular FRT luminal fluid further informs our understanding of secretory mechanisms of the FRT and serves as a foundation for establishing the roles of ejaculate-female interactions in fertility.
Project description:Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce a similar immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster. We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against other pathogens. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females. In contrast to previous results, our data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. The genes which we identified as differentially expressed after infection are promising candidates for controlling the host’s response to the sigma virus.