Project description:We characterized the mouse trophoblast giant cell epigenome and gene expression profiles. We then compared these data to our data on underrepresentation in the polyploid trophoblast giant cells. We profiled 5 histone modifications (+ chromatin input) using ChIP-Seq, and digital expression profiles (3' RNA-Seq) for trophoblast giant cells derived from mouse. Furthermore, we profiled digital expression profiles (3' RNA-Seq) for in vivo trophoblast giant cells samples from e9.5 wildtype mouse trophoblast giant cells. We found that underrepresented domains in trophoblast giant cells are enriched for repressive marks and anti-correlate with active marks and transcription.
Project description:We characterized regions of underrepresentation that are specific to mouse polyploid trophoblast giant cells. We performed array Comparative Genomics Hybridization (aCGH) to examine copy number variation (CNV) in mouse polyploid trophoblast giant cells (TGCs). We performed the following experiments in duplicates to examine CNV during various stages of in vivo and in vitro TGC development: e9.5 TGCs vs. embryonic controls, e11.5 TGCs vs. embryonic controls, e13.5 TGCs vs. embryonic controls, e16.5 TGCs vs. embryonic controls, as well as TGCs cultured 3, 5 and 7 days vs. 2N trophoblast stem cells. We also performed the following controls to show that underrepresentation is only found in polypoid trophoblast giant cells and not in either 2N placental cell types nor in other types of polyploid cells: 2N placenta disk vs. embryonic controls, 2N trophoblast stem cells vs. embryonic stem cells, and polyploid Megakaryocytes vs. embryonic controls. When possible, we performed arrays with the test and control samples of opposite sex (F-female, M-male), as an internal control for the array.
Project description:We employed miRNA-seq to profile all miRNAs from a pure population of hand-dissected polyploid TGCs from embryonic day 9.5. These data set of polyploid-specific TGCs microRNAs will provide insights into TGCs differentiation and endoreplication. TGCs were micro-dissected from day E9.5 nine implantation sites from C57BL/J6 mice. The portion of the TGCs in direct contact with the spongiotrophoblast layer and the labyrinth layer were manually removed to avoid collecting any polyploid cells from the former or multi-nucleated syncytiotrophoblast cells from the latter.
Project description:We employed RNA-seq to transcriptionally profile a pure population of hand-dissected polyploid TGCs from embryonic day 9.5. These data provide a set of polyploid-specific TGCs transcripts that will aid in the understanding of TGCs differentiation and endoreplication. TGCs were micro-dissected from day E9.5 nine implantation sites from C57BL/6J mice. The portion of the TGCs in direct contact with the spongiotrophoblast layer and the labyrinth layer were manually removed to avoid collecting any polyploid cells from the former or multi-nucleated syncytiotrophoblast cells from the latter.
Project description:We characterized the mouse trophoblast giant cell epigenome and gene expression profiles. We then compared these data to our data on underrepresentation in the polyploid trophoblast giant cells.
Project description:We profiled trophoblast stem cell replication-timing in order to compare these data to our data on underrepresented (UR) domainss in trophoblast giant cells (polyploid cells derived from 2N trophoblast stem cells). We found that UR domains are formed from late-replicating regions in tropoblast stem cells.