Project description:The main objective is to improve xylose fermentation by deletion of PHO80 gene in recombinant xylose-fermenting yeast strains. Microarray analysis was performed to investigate effects of PHO80 deletion on the gene expression profile of xylose-fermenting strains. Samples for 2 strains (wild-type control, PHO80-deleted strain) were taken after 6h of xylose fermentation. Each sample was triplicated, resulting in a total of 6 samples.
Project description:The main objective is to improve xylose fermentation by deletion of PHO80 gene in recombinant xylose-fermenting yeast strains. Microarray analysis was performed to investigate effects of PHO80 deletion on the gene expression profile of xylose-fermenting strains.
Project description:To select candidate promoters that function in the presence of xylose, we performed comprehensive gene expression analyses using xylose-utilizing yeast strains both during xylose and glucose fermentation.
Project description:In the present study transcriptome and proteome of recombinant, xylose-utilising S. cerevisiae grown in aerobic batch cultures on xylose were compared with glucose-grown cells both in glucose repressed and derepressed states. The aim was to study at genome-wide level how signalling and carbon catabolite repression differed in cells grown on either glucose or xylose. The more detailed knowledge about is xylose sensed as a fermentable carbon source, capable of catabolite repression like glucose, or is it rather recognised as a non-fermentable carbon source is important in achieving understanding for further engineering this yeast for more efficient anaerobic fermentation of xylose.
Project description:The xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection. The underlying molecular basis of the enhanced xylose fermentation capability was analyzed.
Project description:Xylose-utilizing yeasts with tolerances to fermentation inhibitors (such as weak organic acids) and high temperature are needed for cost-effective simultaneous saccharification and co-fermentation (SSCF) of lignocellulosic materials. We constructed a novel xylose-assimilating Saccharomyces cerevisiae strain with improved fermentation performance under heat and acid co-stress using the genome shuffling technique. Two xylose-utilizing diploid yeasts with different genetic backgrounds were used as the parental strains for genome shuffling. The hybrid strain Hyb-8 showed significantly higher xylose fermentation ability than both parental strains (Sun049T-Z and Sun224T-K) under co-stress conditions of heat and acids. To screen for genes that might be important for fermentation under heat and acid co-stress, a transcriptomic analysis of hybrid strain Hyb-8 and its parental strains was performed.
Project description:All organisms have evolved elaborate physiological pathways that regulate growth, proliferation, metabolism, and stress response. These pathways must be properly coordinated to elicit the appropriate response to an ever-changing environment. While individual pathways have been well studied in a variety of model systems, there remains much to uncover about how they are integrated to produce global changes in a cell. Past work from our lab, focused on engineering the budding yeast Saccharomyces cerevisiae for fermentation of the non-native pentose sugar xylose, discovered that hyperactivation of the RAS/Protein Kinase A (PKA) pathway was needed for rapid anaerobic xylose fermentation. Interestingly, the mechanism of PKA hyperactivation has a dramatic impact on growth and metabolism on xylose; deletion of the RAS inhibitor IRA2 permits rapid growth and fermentation, while deletion of the PKA regulatory subunit BCY1 allows for fermentation without growth on xylose. To understand how a single deletion in the PKA pathway can decouple growth and metabolism, we performed transcriptomic analysis of these strains, predicting that altered PKA activity would impact global gene expression and identify pathways important for growth and metabolism coordination. Notably, we found enriched differential expression of lipid metabolism genes, targets of the phospholipid biosynthetic gene transcription factor Ino4, and genes containing the Aft1/2 consensus motif. These results suggested that dysfunctional lipid homeostasis may be responsible for decoupling growth and metabolism in the bcy1∆ strain. In parallel work, we also directly evolved the bcy1∆ strain to grow anaerobically on xylose and found point mutations in TPK1, OPI1, RIM8, and TOA1 permitted growth. Interestingly, Opi1 is the inhibitor of Ino4, further supporting the role of lipid homeostasis in growth and metabolism coordination. This work shows that a single genetic change can have dramatic impacts on multiple aspects of cellular physiology.
Project description:During fermentation Saccharomyces yeast produces various aroma-active metabolites determining the different characteristics of aroma and taste in fermented beverages. Amino acid utilization by yeast during brewer´s wort fermentation is seen as linked to flavour profile. To better understand the relationship between the biosynthesis of aroma relevant metabolites and the importance of amino acids, DNA microarrays were performed for Saccharomyces cerevisiae strain S81 and Saccharomyces pastorianus var. carlsbergensis strain S23, respectively. Thereby, changes in transcription of genes were measured, which are associated with amino acid assimilation and its derived aroma-active compounds during fermentation.
Project description:Increasing yeast robustness against biomass-derived inhibitors and insoluble solids is essential for the realization of a bio-based economy. The xylose-fermenting Saccharomyces cereivisiae F12 strain was subjected to an adaptive laboratory evolution experiment in the presence of these stressors. The resulting evolved strain exhibit better fermentation performance in terms of xylose consumption and ethanol yields than the parental strain. The overexpression of genes related to cell wall integrity and the stress response, together with the downregulation of protein synthesis and iron transport and homeostasis were highlighted as the major biological processes responsible for the improved phenotype.