Project description:Analysis of the different genotype tumors revealed enhanced chromosomal aberrations in all tumors. The most chromosomal aberrations were found in the krt18-/- tumors. Two-condition experiment: wt (non-affected) liver tissue vs. wt tumor / krt18+/-tumor / krt18-/- tumor
Project description:aCGH analysis of murine transgenic liver tissues affected with HCC, hybridized with age (12 months) and sex matched alb cre mice. Keywords: Array comparative genomic hybridization analysis (aCGH).
Project description:aCGH analysis of murine transgenic liver tissues affected with HCC, hybridized with age (18 months) and sex matched C57BL/6 mice. Moreover, 18months old C57BL/6 livers were hybridized with independent 18 months old C57BL/6 livers for control. Keywords: Array comparative genomic hybridization analysis (aCGH).
Project description:aCGH analysis of murine transgenic liver tissues affected with HCC, hybridized with age (12 months) and sex matched alb cre mice. Keywords: Array comparative genomic hybridization analysis (aCGH). Independent HCC of MCL1-/- mice were hybridized with pooled wt mice. Mclâ1flox/flox mice (C57BL/6 background) were obtained from the Dana Farber Cancer Institute, Boston, USA (Opferman JT et al., Nature 2003) and bred to heterozygous Albumin-Cre mice (C57BL/6 background) which led to hepatocyte-specific deletion of Mcl-1. The mice develop severe chronic liver damage (Vick B et al., Hepatology, 2009).
Project description:aCGH analysis of murine transgenic liver tissues affected with HCC, hybridized with age (18 months) and sex matched C57BL/6 mice. Moreover, 18months old C57BL/6 livers were hybridized with independent 18 months old C57BL/6 livers for control. Keywords: Array comparative genomic hybridization analysis (aCGH). Independent HCC of AlbLTab mice were hybridized with independent C57BL/6 mice.
Project description:Astrocyte elevated gene-1 (AEG-1) as a positive inducer of hepatocellular carcinoma (HCC). Transgenic mice with hepatocyte-specific expression of AEG-1 were challenged with N-nitrosodiethylamine (DEN) and developed multinodular HCC with steatotic features. Thus, we have identified the follwoing AEG-1 functions: induction of steatosis, inhibition of senescence and activation of coagulation pathway to augment an aggressive hepatocarcinogenic phenotype. Transgenic Mice liver tumors compared against WT mice liver tumors.
Project description:Clonal relationship between the primary and metastaic cancer Wild type healthy liver tissue vs. liver tumors and corresponding lung tumors in 18 months old krt18-/- mice
Project description:Background & Aims. Resection of hepatocellular carcinoma (HCC) tumors by partial hepatectomy (PHx) is associated with promoting hepatocarcinogenesis. We have previously reported that PHx promotes hepatocarcinogenesis in the Mdr2-knockout (Mdr2-KO) mouse, a model for inflammation-mediated HCC. Now, we explored the molecular mechanisms underlying the tumor-promoting effect of PHx in these mice. Methods. Using microarrays-based techniques, we compared genomic and transcriptomic profiles of HCC tumors developing in the Mdr2-KO mice either spontaneously or following PHx. Results. PHx accelerated HCC development in these mice by four months. PHx-induced tumors had only amplifications affecting multiple chromosomes and locating mainly near the acrocentric centromeres of murine chromosomes. Four different chromosomal regions were amplified each in at least three tumors. All tumors of untreated mice had chromosomal aberrations, including both deletions and amplifications. Comparison of gene expression profiles revealed a significantly enriched expression of oncogenes, chromosomal instability markers and E2F1 targets in the post-PHx compared to spontaneous tumors. Both tumor groups shared the same frequent amplification at chromosome 18. Here, we demonstrated that one of the regulatory genes encoded by this amplified region, Crem, was over-expressed in the nuclei of murine and human HCC cells in vivo, and that it stimulated proliferation of human HCC cells in vitro. Conclusions: PHx of a chronically inflamed liver directed tumor development to a discrete pathway characterized by amplification of specific chromosomal regions and expression of specific tumor-promoting genes. Crem is a new candidate HCC oncogene frequently amplified in this model and frequently over-expressed in human HCC. To explore the mechanisms of the accelerated HCC development by PHx, we compared liver tumors and their matched non-tumor liver tissues between 9-month-old hepatectomized and 13-14-month-old untreated Mdr2-KO mice.
Project description:Background & Aims. Resection of hepatocellular carcinoma (HCC) tumors by partial hepatectomy (PHx) is associated with promoting hepatocarcinogenesis. We have previously reported that PHx promotes hepatocarcinogenesis in the Mdr2-knockout (Mdr2-KO) mouse, a model for inflammation-mediated HCC. Now, we explored the molecular mechanisms underlying the tumor-promoting effect of PHx in these mice. Methods. Using microarrays-based techniques, we compared genomic and transcriptomic profiles of HCC tumors developing in the Mdr2-KO mice either spontaneously or following PHx. Results. PHx accelerated HCC development in these mice by four months. PHx-induced tumors had only amplifications affecting multiple chromosomes and locating mainly near the acrocentric centromeres of murine chromosomes. Four different chromosomal regions were amplified each in at least three tumors. All tumors of untreated mice had chromosomal aberrations, including both deletions and amplifications. Comparison of gene expression profiles revealed a significantly enriched expression of oncogenes, chromosomal instability markers and E2F1 targets in the post-PHx compared to spontaneous tumors. Both tumor groups shared the same frequent amplification at chromosome 18. Here, we demonstrated that one of the regulatory genes encoded by this amplified region, Crem, was over-expressed in the nuclei of murine and human HCC cells in vivo, and that it stimulated proliferation of human HCC cells in vitro. Conclusions: PHx of a chronically inflamed liver directed tumor development to a discrete pathway characterized by amplification of specific chromosomal regions and expression of specific tumor-promoting genes. Crem is a new candidate HCC oncogene frequently amplified in this model and frequently over-expressed in human HCC. To explore the mechanisms of the accelerated HCC development by PHx, we compared liver tumors and their matched non-tumor liver tissues between 9-month-old hepatectomized and 13-14-month-old untreated Mdr2-KO mice. RNA was isolated from frozen liver tissues and subjected to gene expression profiling using GeneChip Mouse Gene 1.0 ST Array