Project description:Oral facial cleft (OFC) is a multifactorial disorder that can present as a cleft lip with or without cleft palate (CL/P) or a cleft palate only. Genome wide association studies (GWAS) of isolated OFC have identified common single nucleotide polymorphisms (SNPs) at the 1q32/IRF6 locus and many other loci where, like IRF6, the gene presumed to be relevant to OFC risk is expressed in embryonic oral epithelium. To identify the functional subset of SNPs at eight such loci we conducted a massively parallel reporter assay in a cell line derived from fetal oral epithelium, revealing SNPs with allele-specific effects on enhancer activity.
Project description:Oral facial cleft (OFC) is a multifactorial disorder that can present as a cleft lip with or without cleft palate (CL/P) or a cleft palate only. Genome wide association studies (GWAS) of isolated OFC have identified common single nucleotide polymorphisms (SNPs) at the 1q32/IRF6 locus and many other loci where, like IRF6, the gene presumed to be relevant to OFC risk is expressed in embryonic oral epithelium. To identify the functional subset of SNPs at eight such loci we conducted a massively parallel reporter assay in a cell line derived from fetal oral epithelium, revealing SNPs with allele-specific effects on enhancer activity.
Project description:We sought to identify Hedgehog-regulated genes in the frontonasal process (FNP) and ventral prosencephalon at GD9.25 in mice, during the initial pathogenesis of cleft lip with or without cleft palate.
Project description:Genome-wide DNA methylation profilinf from 67 non syndromic cleft lip and palate samples and controls using whole-blood DNA and Illumina Infinium Human Methylation 450K Bead array, in which over 485000 CpGs sites were analysed per sample
Project description:Mutations in the transcription factor p63 underlie of a series of human malformation syndromes which are defined by a combination of epidermal, limb and craniofacial abnormalities including cleft lip and palate. Transcription profiling was performed to determine the role of p63 in vivo mouse palatal shelves. Microarray analysis was done of palatal shelves dissected from E14.0 wild-type versus p63-null mouse embryos.