Project description:Avian pathogenic Escherichia coli strains frequently cause extra-intestinal infections and are responsible for significant economic losses in the poultry industry worldwide. APEC isolates are closely related to human extraintestinal pathogenic E.coli strains and may also act as pathogens for humans. In this work, three type VI secretion systems were deleted to analyze which pathogenicity characteristics would change in the mutants, compared to wild type strain (SEPT 362).
Project description:Investigation of whole genome gene expression level changes in a Escherichia coli MG1655 K-12 ∆fnr mutant, compared to the wild-type strain. The mutations engineered into this strain produce a strain lacking the FNR protein.
Project description:Escherichia coli O157:H7 is a food-borne pathogen that causes bloody diarrhea and hemolytic uremic syndrome. Hfq is an sRNA chaperone protein that is involved in post-transcriptional regulation of virulence genes in pathogenic bacteria. In EHEC strain EDL933, Hfq acts a negative regulator of the locus of enterocyte effacement (LEE) that encodes most of the proteins involved in type three secretion and attaching and effacing lesions. We deleted hfq in E. coli O157:H7 strain 86-24 and compared global transcription profiles of the hfq mutant to the wild type strain in exponential growth phase. Deletion of hfq affected transcription of genes common to nonpathogenic and pathogenic strains of E. coli as well as pathogen-specific genes. Downregulated genes in the hfq mutant included ler as well as genes encoded in LEE2-5 that encode for type three secretion and AE lesion formation. Decreased expression of the LEE genes in the hfq mutant occurred at mid-, late, and stationary growth phases in both LB and DMEM media as detected by qRT-PCR. We also confirmed decreased regulation of the LEE genes by examining secreted proteins and AE lesion formation by the hfq mutant and WT strains. Deletion of hfq also caused decreased expression of the two-component system qseBC involved in inter-kingdom signaling and virulence gene regulation in EHEC as well as an increase in stx2AB expression that encodes for the deadly Shiga toxin. Altogether, these data indicate that Hfq plays a different regulatory role in EHEC 86-24 from what has been reported for EHEC strain EDL933 and that the role of Hfq in EHEC virulence regulation extends beyond the LEE.
Project description:To get a high resolution understanding of the effect of Fur on global gene expression, we compared by high-resolution RNAseq the transcriptomes of a wild-type E. coli K-12 strain and its Fur deletion derivative grown in minimal medium with or without supplementation of iron. Three independent total RNA extraction and RNAseq assays were performed for each strain in each condition.
Project description:Avian pathogenic Escherichia coli strains frequently cause extra-intestinal infections and are responsible for significant economic losses in the poultry industry worldwide. APEC isolates are closely related to human extraintestinal pathogenic E.coli strains and may also act as pathogens for humans. In this work, three type VI secretion systems were deleted to analyze which pathogenicity characteristics would change in the mutants, compared to wild type strain (SEPT 362). Four Avian Pathogenic Escherichia coli strains (one wild type and three deleted mutants) were grown at 37°C in Dulbecco´s Modified Eagle´s Media (DMEM) media until reach O.D 600 = 0.8, for RNA extraction and hybridization on Affymatrix microarrays.
Project description:Investigation of whole genome gene expression level changes in a Escherichia coli MG1655 K-12 ?fnr mutant, compared to the wild-type strain. The mutations engineered into this strain produce a strain lacking the FNR protein. WT strains were grown under aerobic and anaerobic growth conditions.
Project description:RpoS is a conserved stress regulator that plays a critical role in survival under stress conditions in Escherichia coli and other γ-proteobacteria. RpoS is also involved in virulence of many pathogens including Salmonella and Vibrio species. Though well characterized in non-pathogenic E. coli K12 strains, the effect of RpoS on transcriptome expression has not been examined in pathogenic isolates. E. coli O157:H7 is a serious human enteropathogen, possessing a genome 20% larger than that of E. coli K12, and many of the additional genes are required for virulence. The genomic difference may result in substantial changes in RpoS-regulated gene expression. To test this, we compared the transcriptional profile of wild type and rpoS mutants of the E. coli O157:H7 EDL933 type strain. The rpoS mutation had a pronounced effect on gene expression in stationary phase, and more than 1,000 genes were differentially expressed (two-fold, p<0.05). By contrast, we found 11 genes expressed differently in exponential phase. Western blot analysis revealed that, as expected, RpoS level was low in exponential phase and substantially increased in stationary phase. The defect in rpoS resulted in impaired expression of genes responsible for stress response (e.g., gadA, katE and osmY), arginine degradation (astCADBE), putrescine degradation (puuABCD), fatty acid oxidation (fadBA and fadE), and virulence (ler, espI and cesF). For EDL933-specific genes on O-islands, we found 50 genes expressed higher in wild type EDL933 and 49 genes expressed higher in the rpoS mutants. The protein levels of Tir and EspA, two LEE-encoded virulence factors, were elevated in the rpoS mutants under LEE induction conditions. Our results show that RpoS has a profound effect on global gene expression in the pathogenic strain O157:H7 EDL933, and the identified RpoS regulon, including many EDL933-specific genes, differs substantially from that of laboratory K12 strains. In this study, we characterized the RpoS regulon of E. coli O157:H7 strain EDL933 using microarray analysis.
Project description:Escherichia coli O157:H7 is an important food-borne pathogen that can cause hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS) in humans. pO157_Sal, a novel conjugative plasmid is present in a Chinese O157:H7 outbreak strain Xuzhou21. Here we investigated the phenotypic and transcriptional differences between the wild type strain Xuzhou21 and the pO157_Sal cured mutant strain Xuzhou21m. RNA-seq analysis found that all 52 ORFs encoded on pO157_Sal were transcribed. 168 chromosomal and pO157 genes were differentially expressed (≥2 fold difference) between Xuzhou21 and Xuzhou21m. Sixty-seven and 101 genes were up-regulated and down-regulated respectively by pO157_Sal including genes related to stress response, adaption and virulence. The plasmid-cured mutant grew slower than wild type in M9 medium under the condition of high NaCl or presence of sodium deoxycholate (NaDC), corroborating with the RNA-seq data. Seven differentially expressed genes are associated with NaDC resistance, including the adenine-specific DNA-methyltransferase gene (dam), multidrug efflux system subunit gene mdtA, hyperosmotically inducible periplasmic protein gene osmY and oxidation-reduction related genes while two differentially expressed genes (osmY and pspD) are likely to be related to resistance to osmotic pressure. A number of differentially expressed genes were virulence associated including four genes encoding T3SS effectors from the chromosome and ehxD from pO157. These findings demonstrated that the plasmid pO157_Sal affects the chromosome and pO157 genes transcription and contributes to the enhanced ability to resist stress. We conclude that pO157_Sal plays an important role in regulating global gene expression and affects virulence and adaptation of E.coli O157:H7.
Project description:Investigation of whole genome gene expression level changes in a Escherichia coli MG1655 K-12 ∆arcA mutant, compared to the wild-type strain. The mutations engineered into this strain produce a strain lacking the ArcA protein. The results are further described in the manuscript The response regulator ArcA uses a diverse binding site architechture to globally regulate carbon oxidation in E. coli