Project description:Genome-wide maps of nucleosome positioning in mouse ES cells with control shRNA and on Smarcad1 KD. MNase-seq data for human colo829 cells are also included.
Project description:Maintaining the dynamic structure of chromatin is critical for regulating the cellular processes that require access to the DNA template, such as DNA damage repair, transcription, and replication. Histone chaperones and ATP-dependent chromatin remodeling factors facilitate transitions in chromatin structure by assembling and positioning nucleosomes through a variety of enzymatic activities. SMARCAD1 is a unique chromatin remodeler that combines the ATP-dependent ability to exchange histones, with the chaperone-like activity of nucleosome deposition. We have shown previously that phosphorylated SMARCAD1 exhibits reduced binding to nucleosomes. However, it is unknown how phosphorylation affects SMARCAD1’s ability to perform its various enzymatic activities. Here we use mutational analysis, activity assays, and mass spectrometry, to probe SMARCAD1 regulation and to investigate the role of its flexible N-terminal region. We show that phosphorylation affects SMARCAD1 binding to nucleosomes and DNA, as well as ATP hydrolysis and histone exchange. Conversely, we report that phosphorylation is inconsequential for histone binding and nucleosome assembly. In addition, the SMARCAD1 N-terminal region is revealed to be critical for nucleosome assembly and histone exchange. Together, this work examines the intricacies of how phosphorylation governs SMARCAD1 activity and provides insight into its complex regulation and diverse activities.Maintaining the dynamic structure of chromatin is critical for regulating the cellular processes that require access to the DNA template, such as DNA damage repair, transcription, and replication. Histone chaperones and ATP-dependent chromatin remodeling factors facilitate transitions in chromatin structure by assembling and positioning nucleosomes through a variety of enzymatic activities. SMARCAD1 is a unique chromatin remodeler that combines the ATP-dependent ability to exchange histones, with the chaperone-like activity of nucleosome deposition. We have shown previously that phosphorylated SMARCAD1 exhibits reduced binding to nucleosomes. However, it is unknown how phosphorylation affects SMARCAD1’s ability to perform its various enzymatic activities. Here we use mutational analysis, activity assays, and mass spectrometry, to probe SMARCAD1 regulation and to investigate the role of its flexible N-terminal region. We show that phosphorylation affects SMARCAD1 binding to nucleosomes and DNA, as well as ATP hydrolysis and histone exchange. Conversely, we report that phosphorylation is inconsequential for histone binding and nucleosome assembly. In addition, the SMARCAD1 N-terminal region is revealed to be critical for nucleosome assembly and histone exchange. Together, this work examines the intricacies of how phosphorylation governs SMARCAD1 activity and provides insight into its complex regulation and diverse activities.
Project description:Maintaining the dynamic structure of chromatin is critical for regulating the cellular processes that require access to the DNA template, such as DNA damage repair, transcription, and replication. Histone chaperones and ATP-dependent chromatin remodeling factors facilitate transitions in chromatin structure by assembling and positioning nucleosomes through a variety of enzymatic activities. SMARCAD1 is a unique chromatin remodeler that combines the ATP-dependent ability to exchange histones, with the chaperone-like activity of nucleosome deposition. We have shown previously that phosphorylated SMARCAD1 exhibits reduced binding to nucleosomes. However, it is unknown how phosphorylation affects SMARCAD1’s ability to perform its various enzymatic activities. Here we use mutational analysis, activity assays, and mass spectrometry, to probe SMARCAD1 regulation and to investigate the role of its flexible N-terminal region. We show that phosphorylation affects SMARCAD1 binding to nucleosomes and DNA, as well as ATP hydrolysis and histone exchange. Conversely, we report that phosphorylation is inconsequential for histone binding and nucleosome assembly. In addition, the SMARCAD1 N-terminal region is revealed to be critical for nucleosome assembly and histone exchange. Together, this work examines the intricacies of how phosphorylation governs SMARCAD1 activity and provides insight into its complex regulation and diverse activities.
Project description:Maintaining the dynamic structure of chromatin is critical for regulating the cellular processes that require access to the DNA template, such as DNA damage repair, transcription, and replication. Histone chaperones and ATP-dependent chromatin remodeling factors facilitate transitions in chromatin structure by assembling and positioning nucleosomes through a variety of enzymatic activities. SMARCAD1 is a unique chromatin remodeler that combines the ATP-dependent ability to exchange histones, with the chaperone-like activity of nucleosome deposition. We have shown previously that phosphorylated SMARCAD1 exhibits reduced binding to nucleosomes. However, it is unknown how phosphorylation affects SMARCAD1’s ability to perform its various enzymatic activities. Here we use mutational analysis, activity assays, and mass spectrometry, to probe SMARCAD1 regulation and to investigate the role of its flexible N-terminal region. We show that phosphorylation affects SMARCAD1 binding to nucleosomes and DNA, as well as ATP hydrolysis and histone exchange. Conversely, we report that phosphorylation is inconsequential for histone binding and nucleosome assembly. In addition, the SMARCAD1 N-terminal region is revealed to be critical for nucleosome assembly and histone exchange. Together, this work examines the intricacies of how phosphorylation governs SMARCAD1 activity and provides insight into its complex regulation and diverse activities.
Project description:Maintaining the dynamic structure of chromatin is critical for regulating the cellular processes that require access to the DNA template, such as DNA damage repair, transcription, and replication. Histone chaperones and ATP-dependent chromatin remodeling factors facilitate transitions in chromatin structure by assembling and positioning nucleosomes through a variety of enzymatic activities. SMARCAD1 is a unique chromatin remodeler that combines the ATP-dependent ability to exchange histones, with the chaperone-like activity of nucleosome deposition. We have shown previously that phosphorylated SMARCAD1 exhibits reduced binding to nucleosomes. However, it is unknown how phosphorylation affects SMARCAD1’s ability to perform its various enzymatic activities. Here we use mutational analysis, activity assays, and mass spectrometry, to probe SMARCAD1 regulation and to investigate the role of its flexible N-terminal region. We show that phosphorylation affects SMARCAD1 binding to nucleosomes, DNA, and histone H2A-H2B, as well as ATP hydrolysis and histone exchange. Conversely, we report that phosphorylation is inconsequential for histone H3-H4 binding and nucleosome assembly. In addition, the SMARCAD1 N-terminal region is revealed to be critical for nucleosome assembly and histone exchange. Together, this work examines the intricacies of how phosphorylation governs SMARCAD1 activity and provides insight into its complex regulation and diverse activities.
Project description:Genome-wide maps of SMARCAD1 binding and histone modification H3R26Cit in mouse ES cells, histone modification H3K9me3, H3K4me3, H3K27Ac in Smarcad1 KD mouse ES cells, and histone modification H3K9me3 in mouse ES cells after PADI inhibition. Together with RNA-seq data for mouse ICM, blastocyst, embryonic stem cells and Smarcad1 KD cells.
Project description:Examination of the repositioning of nucleosome and hexasome-sized particles induced by the SMARCAD1 family proteins in cells support the hexasome-binding mode. Our findings reveal a new mode of chromatin regulation, wherein the nucleosome intermediates are specially remodeled through an ATP-dependent process.
Project description:Nucleosome positioning is critical to chromatin accessibility, and is associated with gene expression programs in cells. Previous nucleosome mapping methods assemble profiles from cell populations and reveal a cell-averaged pattern: nucleosomes are positioned and form a phased array surrounding the transcription start sites (TSSs ) of active genes and DNase I hypersensitive sites (DHSs). However, cells exhibit remarkable expression heterogeneity in response to active signaling even in a homogenous population of cells, which may be related to the heterogeneity in chromatin accessibility. Here, we report a technique, termed single-cell MNase-seq (scMNase-seq), to measure genome-wide nucleosome positioning and chromatin accessibility simultaneously in single cells. Application of scMNase-seq to NIH3T3, mouse primary naïve CD4 T and embryonic stem cells (mESC) reveals two novel principles of nucleosome organization: (1) nucleosomes surrounding TSSs of silent genes or in heterochromatin regions show large positioning variation across different cells but are highly uniformly spaced along the nucleosome array and, (2) In contrast, nucleosomes surrounding TSSs of active genes and DHSs show small positioning variation across different cells but show relatively low spacing uniformness along the nucleosome array. We found a bimodal distribution of nucleosome spacing at DHSs, which corresponds to inaccessible and accessible states and is associated with nucleosome variation and accessibility variation across cells. Nucleosome variation within single cells is smaller than that across cells and variation within the same cell type is smaller than that across cell types. A large fraction of naïve CD4 T cells and mESCs show depleted nucleosome occupancy at the de novo enhancers detected in their respectively differentiated lineages, revealing the existence of cells primed for differentiation to specific lineages in undifferentiated cell populations.
Project description:We explored the mechanism by which RdDM affects nucleosome positioning in Arabidopsis thaliana. We showed that POLV has a direct effect on nucleosomes through the SWI/SNF complex. We found that the AGO4-siRNA complex is involved in nucleosome positioning via IDN2. Moreover, the SWI/SNF complex is not required for DNA methylation in positioned nucleosomes. Instead, we found that DNA methylation is needed for nucleosome positioning in differentially methylated regions. Taken together, we propose a model where the RdDM pathway directs nucleosome positioning through DNA methylation to establish transcriptional gene silencing.