Project description:the gene expression profiling results provide important information for the genes regulated by crosstalk between Shp2 and Pten mediated signal pathways Total RNA was extracted from CD71mid Ter119high erythroblasts isolated from the bone marrow of wide type, Shp2 knock-out, Pten knock-out and double knock-out mice
Project description:To investigate Pten function in neonatal developing brain, we conditionally inactivated Pten in neural stem/progenitor cells at birth using a Nestin-CreER transgenic driver. Pten inactivation created a novel perivascular proliferative niche in the cerebellum that did not progress to malignancy during the lifespan of the mouse. Co-deletion of Pten and Trp53 synergized to cause fully penetrant medulloblastoma originating from a perivascular niche. The Pten and Trp53 double knock-out medulloblastomas showed an extensive and abnormal blood vessel network and advanced neuronal differentiation of tumor cells compared to medulloblastomas arising in Nestin-creER;Trp53fl/fl mice, suggesting that Pten loss promoted angiogenesis and neuronal differentiation in medulloblastoma. EdU pulse-chase experiments demonstrated a lineage hierarchy of the double knock-out medulloblastomas consistent with a perivascular cancer stem cell population. The Pten and Trp53 double knock-out medulloblastomas showed somatic loss of chromosomes 7, 13 and 16, and inactivating mutations in the tumor suppressor gene Ptch1. Gene expression profiles showed that this model recapitulated the subgroup of human medulloblastomas with de-regulated SHH signaling.
Project description:The aim of the study was to investigate whether the trefoil peptide genes, in concerted action with a miRNA regulatory network, were contributing to nutritional maintrenance. Using a Tff3 knock-out mouse model, 21 specific miRNAs were noted to be significantly deregulated when compared to the wild type strain.
Project description:The aim of the study was to investigate whether the trefoil peptide genes, in concerted action with a miRNA regulatory network, were contributing to nutritional maintrenance. Using a Tff2 knock-out mouse model, 48 specific miRNAs were noted to be significantly deregulated when compared to the wild type strain.