Project description:methylC-seq profiling of 4 time points during germination in Arabidopsis, from mature seed, through stratification, germination and to post-germination.
Project description:RNAseq profiling of 10 time points during germination in Arabidopsis, from freshly harvested seed, through mature seed, stratification, germination and to post-germination.
Project description:sRNA-seq profiling of 10 time points during germination in Arabidopsis, from freshly harvested seed, through mature seed, stratification, germination and to post-germination.
Project description:In depth temporal profiling of transcript changes at 10 time points during germination in Arabidopsis seed was carried out. The time course utilised, encompassed seed maturation, stratification, germination and post-germination and provided a global investigation into the tightly regulated, phasic changes that define seed germination. A previously unidentified transient expression pattern was identified for a group of genes, whereby a significant rise in abundance was observed at the end of stratification and significantly lower expression observed up to 6 hours later. Total RNA extraction was carried out on 80 mg of Arabidopsis seeds at 10 time points during germination in triplicate. The time points selected were: freshly harvested seed (H), seeds following 15 days of ripening (0 h), seeds after; 1 h of stratification (1 h S), 12 h of stratification (12 h S), 48 h of stratification (48 h S), followed by seed collected 1 hour into the light (1 h SL), 6 hours into the light (6 h SL), 12 hours into the light (12 h SL), 24 hours into the light (24 h SL) and 48 hours into the light (48 h SL).
Project description:In depth temporal profiling of transcript changes at 10 time points during germination in Arabidopsis seed was carried out. The time course utilised, encompassed seed maturation, stratification, germination and post-germination and provided a global investigation into the tightly regulated, phasic changes that define seed germination. A previously unidentified transient expression pattern was identified for a group of genes, whereby a significant rise in abundance was observed at the end of stratification and significantly lower expression observed up to 6 hours later.
Project description:This series analyses germinating Arabidopsis seeds with both temporal and spatial detail, revealing two transcriptional phases that are separated with respect to testa rupture. Performed as part of the ERA-NET Plant Genomics grant vSEED. Arabidopsis seeds were dissected into four tissues at nine time-points during seed germination. The tissues were the combined micropylar and chalazal endosperm (MCE), the remaining endosperm (PE), the radicle and embryonic axis (RAD) and the cotyledons (COT). At testa and endosperm rupture the seeds were sampled in separate pre- and post-ruptured populations.
Project description:Mature seeds of Arabidopsis thaliana are desiccation tolerant, but they lose DT while progressing to germination. Yet, there is a small developmental window during which DT can be rescued by treatment with polyethylene glycol (PEG). We used microarrays to identify relevant genes in the re-establishment of desiccation tolerance by PEG.
Project description:Production of morphologically and physiologically variable seeds is an important strategy that helps plants to survive in unpredictable natural conditions. However, the model plant Arabidopsis thaliana and most agronomically essential crops yield visually homogenous seeds. Using automated phenotype analysis, we observed that in Arabidopsis small seeds tend to have higher primary and secondary dormancy levels when compared to large ones. Transcriptomic analysis revealed distinct gene expression profiles between large and small seeds. Large seeds had higher expression of translation-related genes implicated in germination competence. In contrast, small seeds showed elevated expression of many positive regulators of dormancy, including a key regulator of this process – the DOG1 gene. Differences in DOG1 expression were associated with differential production of its alternative cleavage and polyadenylation isoforms where in small seeds proximal poly(A) site is selected resulting in a short mRNA isoform. Furthermore, single-seed RNA-seq analysis demonstrated that large seeds resemble DOG1 knockout mutant seeds. Finally, on the single seed level, the expression of genes affected by seed size was correlated with the expression of genes positioning seeds on the path towards germination. Our results demonstrate an unexpected link between seed size and dormancy phenotypes in a species producing highly homogenous seed pools, suggesting that the correlation between seed morphology and physiology is more widespread than initially assumed.