Project description:Pochonia chlamydosporia (Goddard) Zare & Gams (Ascomycota, Sordariomycetes, Hypocreales, Pochoniaceae, Pochonia) is a nematophagous fungus with significant potential as a biocontrol agent against animal-parasitic nematode. However, the molecular and cellular mechanisms underlying its infection process remain poorly understood. This study aims to provide a comprehensive investigation of P. chlamydosporia infection dynamics in Parascaris equorum eggs using both microscopic and proteomic approaches. The infection was monitored at three distinct stages (early, middle, and late), with corresponding ultrastructural and molecular changes observed. Microscopic analysis using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and light microscopy (LM) revealed the progressive invasion of P. chlamydosporia into nematode eggs. These observations provided detailed insights into the morphological changes in both fungal structures and nematode eggs, highlighting key infection stages such as fungal attachment, germination, and egg degradation. Furthermore, the observations confirmed the stages of fungal colonization, emphasizing the dynamic host-pathogen interaction at the macroscopic level. To complement these observations, a 4D-DIA-based quantitative proteomics approach was employed to analyze the exoproteomic changes in P. chlamydosporia during infection. A total of 410 differentially expressed proteins (DEPs) were identified across the three infection stages, with 313 proteins upregulated and 403 proteins downregulated. Gene Ontology (GO) enrichment analysis revealed that these DEPs are involved in critical biological processes, including cellular stress response, proteolysis, metabalic process, and hydrolase activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis further identified key infection-associated pathways, such as signal transduction, cell wall biosynthesis, energy metabolism, and host-pathogen interactions. These findings suggest that P. chlamydosporia employs a highly coordinated molecular strategy to adapt to and exploit its host. Quantitative PCR (qPCR) validation of key genes involved in signal transduction and immune evasion mechanisms further supported the molecular basis of P. chlamydosporia's parasitic behavior. These findings contribute to our understanding of fungal-nematode interactions and lay a solid foundation for the development of P. chlamydosporia as a sustainable tool for integrated pest management.
Project description:Pochonia chlamydosporia is a fungal parasite of nematode eggs. Studies have shown that some strains of Pochonia chlamydosporia can promote plant growth and induce plants' systemic resistance to root-knot nematodes by colonizing in their roots. This study aimed to verify the effect of the PC-170 strain on tomato growth and systemic resistance. Split-root experiments were conducted to observe the systemic resistance induced by PC-170. To explore the defense pathway that was excited due to the colonization by PC-170, we tested the expression of marker genes for defense pathways, and used mutant lines to verify the role of plant defense pathways. Our results showed that PC-170 can colonize roots, and promotes growth. We found a role for jasmonic acid (JA) in modulating tomato colonization by PC-170. PC-170 can activate tomato defense responses to reduce susceptibility to infection by the root-knot nematode Meloidogyne incognita, and induced resistance to some pathogens in tomatoes. The marker genes of the defense pathway were significantly induced after PC-170 colonization. However, salicylic acid (SA)- and jasmonic acid (JA)-dependent defenses in roots were variable with the invasion of different pathogens. Defense pathways play different roles at different points in time. SA- and JA-dependent defense pathways were shown to cross-communicate. Different phytohormones have been involved in tomato plants' responses against different pathogens. Our study confirmed that adaptive JA signaling is necessary to regulate PC-170 colonization and induce systemic resistance in tomatoes.