Project description:In this study, we mapped for the first time differences in transcription binding among individuals and elucidated the genetic basis of such variation. Whole-genome Ste12 binding profiles were determined using ChIP-Seq in pheromone-treated cells of 43 segregants of a cross between two highly diverged yeast strains, YJM789 and S288c, as well as the parental lines. We identified extensive Ste12 binding variation among individuals and mapped underlying cis- and trans- acting loci responsible for such variation. We showed that the majority of TF binding variation is cis-linked and that many variations are associated with polymorphisms residing in the binding motifs of Ste12 as well as those of several known and proposed Ste12 cofactors. We also identified two trans factors, AMN1 and FLO8, that modulate Ste12 binding to promoters of more than 10 genes under α-factor treatment. Neither of these two genes was known to regulate Ste12 previously, and we suggest that they may be key mediators of gene activity and phenotypic diversity. Ste12 binding strongly correlates with gene expression for more than 200 genes, indicating that binding variation is functional. Many of the variable bound genes are involved in cell wall organization and biogenesis. Overall, we identified key regulators of molecular diversity among individuals and provide novel insights into mechanisms of gene regulation.
Project description:DNA double-strand breaks (DSBs) initiate meiotic recombination. Past DSB-mapping studies have used rad50S or sae2? mutants, which are defective in break processing, to accumulate DSBs, and report large (= 50 kb) “DSB-hot” regions that are separated by “DSB-cold” domains of similar size. Substantial recombination occurs in some DSB-cold regions, suggesting that DSB patterns are not normal in rad50S or sae2? mutants. We therefore developed novel methods that detect DSBs using ssDNA enrichment and microarray hybridization, and that use background-based normalization to allow cross-comparison between array datasets, to map genome-wide the DSBs that accumulate in processing-capable, repair-defective dmc1î and dmc1î rad51î mutants. DSBs were observed at known hotspots, but also in most previously-identified “DSB-cold” regions, including near centromeres and telomeres. While about 40% of the genome is DSB-cold in rad50S mutants, analysis of meiotic ssDNA from dmc1? shows that most of these regions have significant DSB activity. Thus, DSBs are distributed much more uniformly than was previously believed. Southern-blot assays of DSBs in selected regions in dmc1?, rad50S and wild-type cells confirm these findings. Comparisons of DSB signals in dmc1, dmc1 rad51, and dmc1 spo11 mutant strains identify Dmc1 as the primary strand transfer activity genome-wide, and Spo11-induced lesions as initiating all meiotic recombination. Keywords: DSB mapping, ChIP-chip, single strand DNA , BND cellulose
Project description:Meiotic recombination starts with the formation of DNA double-strand breaks (DSBs) made by Spo11. In Saccharomyces cerevisiae, the nonrandom distribution of meiotic DSBs along the genome can be attributed to the combined influence of multiple factors on Spo11 cleavage. One factor is higher-order chromatin structure, particularly the loop-axis organization of meiotic chromosomes. Axial element proteins Red1 and Hop1 provide the basis for meiotic loop-axis organization and are implicated in diverse aspects of meiotic recombination. Mek1 is a meiotic-specific kinase associated with Red1 and Hop1. Red1, Hop1, and Mek1 are required for normal DSB levels, but their effects on the DSB distribution has not been examined, and exactly how these proteins influence DSB levels and distribution is unknown. Here, we examined the contributions of Red1, Hop1, and Mek1 to the DSB distribution by deep sequencing and mapping Spo11-associated oligonucleotides from red1, hop1, and mek1 mutant strains, thereby generating genome-wide meiotic DSB maps.
Project description:We sequenced the genome of Saccharomyces cerevisiae strain YJM789, which was derived from a yeast isolated from the lung of an AIDS patient with pneumonia. The strain is used for studies of fungal infections and quantitative genetics because of its extensive phenotypic differences to the laboratory reference strain, including growth at high temperature and deadly virulence in mouse models. Here we show that the approximately 12-Mb genome of YJM789 contains approximately 60,000 SNPs and approximately 6,000 indels with respect to the reference S288c genome, leading to protein polymorphisms with a few known cases of phenotypic changes. Several ORFs are found to be unique to YJM789, some of which might have been acquired through horizontal transfer. Localized regions of high polymorphism density are scattered over the genome, in some cases spanning multiple ORFs and in others concentrated within single genes. The sequence of YJM789 contains clues to pathogenicity and spurs the development of more powerful approaches to dissecting the genetic basis of complex hereditary traits.
Project description:In this study, we mapped for the first time differences in transcription binding among individuals and elucidated the genetic basis of such variation. Whole-genome Ste12 binding profiles were determined using ChIP-Seq in pheromone-treated cells of 43 segregants of a cross between two highly diverged yeast strains, YJM789 and S288c as well as the parental lines. We identified extensive Ste12 binding variation among individuals and mapped underlying cis- and trans- acting loci responsible for such variation. We showed that the majority of TF binding variation is cis-linked and that many variations are associated with polymorphisms residing in the binding motifs of Ste12 as well as those of several known and proposed Ste12 cofactors. We also identified two trans factors, AMN1 and FLO8, that modulate Ste12 binding to promoters of more than 10 genes under α-factor treatment. Neither of these two genes was known to regulate Ste12 previously, and we suggest that they may be key mediators of gene activity and phenotypic diversity. Ste12 binding strongly correlates with gene expression for more than 200 genes indicating that binding variation is functional. Many of the variable bound genes are involved in cell wall organization and biogenesis. Overall, we identified key regulators of molecular diversity among individuals and provide novel insights into mechanisms of gene regulation.
Project description:The Spo11 complex catalyzes the formation of DNA double-strand breaks (DSBs), initiating meiotic recombination-a process essential for fertility and genetic diversity. Although Spo11’s function has been known for 27 years, previous efforts to reconstitute DSB formation in vitro have been unsuccessful. Here, we biochemically characterize mouse SPO11 and TOP6BL protein complex and demonstrate that this complex cleaves DNA and covalently attaches to the 5' terminus of DNA breaks in vitro. Using a point-mutation strategy, we reveal that Mg2+ is essential for DNA cleavage activity of this complex in vitro, as confirmed by knock-in mice carrying a point mutation in SPO11 that disrupts its binding to Mg2+, thereby abolishing DSB formation. However, the activity of the SPO11 complex is ATP-independent. We also present evidence that the mouse SPO11 complex is biochemically distinct from the ancestral topoisomerase VI. Our findings establish a mechanistic framework for understanding the initial steps of meiotic recombination.
Project description:DNA double-strand breaks (DSBs) initiate meiotic recombination. Past DSB-mapping studies have used rad50S or sae2? mutants, which are defective in break processing, to accumulate DSBs, and report large (= 50 kb) “DSB-hot” regions that are separated by “DSB-cold” domains of similar size. Substantial recombination occurs in some DSB-cold regions, suggesting that DSB patterns are not normal in rad50S or sae2? mutants. We therefore developed novel methods that detect DSBs using ssDNA enrichment and microarray hybridization, and that use background-based normalization to allow cross-comparison between array datasets, to map genome-wide the DSBs that accumulate in processing-capable, repair-defective dmc1î and dmc1î rad51î mutants. DSBs were observed at known hotspots, but also in most previously-identified “DSB-cold” regions, including near centromeres and telomeres. While about 40% of the genome is DSB-cold in rad50S mutants, analysis of meiotic ssDNA from dmc1? shows that most of these regions have significant DSB activity. Thus, DSBs are distributed much more uniformly than was previously believed. Southern-blot assays of DSBs in selected regions in dmc1?, rad50S and wild-type cells confirm these findings. Comparisons of DSB signals in dmc1, dmc1 rad51, and dmc1 spo11 mutant strains identify Dmc1 as the primary strand transfer activity genome-wide, and Spo11-induced lesions as initiating all meiotic recombination. Keywords: DSB mapping, ChIP-chip, single strand DNA , BND cellulose We use two different strategies to map the genome-wide distribution of meiotic DSBs in the yeast Saccharomyces cerevisiae. The first is a chromatin immunoprecipitation (ChIP) based approach that targets the Spo11p protein, which remains covalently attached to DSB ends in the rad50S mutant background. The second approach involves BND cellulose enrichment of the single strand DNA (ssDNA) recombination intermediate formed by end-resection at DSB sites following Spo11p removal. We use dmc1 and dmc1 rad51 mutants that accumulates meiotic single strand DNA intermediates