Project description:Deep sequencing of small RNAs from three Phytophthora species, P. infestans, P. ramorum and P. sojae, was done to systematically analyze small RNA-generating components of Phytophthora genomes. We found that each species produces two distinct small RNA populations that are predominantly 21- or 25-nucleotides long. We present evidence that 25-nucleotide small RNAs are short-interfering RNAs that silence repetitive genetic elements. In contrast, 21-nucleotide small RNAs are associated with inverted repeats, including a novel microRNA family, and may function at the post-transcriptional level. Phytophthora ramorum mycelium small RNAs were sequenced and aligned to the P. ramorum genome for analysis. *Raw data files (fastq) are unavailable for this study.
Project description:Hypocotyls of soybean (Glycine max) seedlings of cultivar Williams were inoculated with mycelia of the oomycete pathogen Phytophthora sojae grown in liquid V8 medium or the hypocotyls were mock inoculated. After 12 hours, the sites of inoculation were excised from the hypocotyls and frozen for RNA extraction. Phytophthora sojae mycelia used for inoculation was saved for RNA extraction also
Project description:Deep sequencing of small RNAs from three Phytophthora species, P. infestans, P. ramorum and P. sojae, was done to systematically analyze small RNA-generating components of Phytophthora genomes. We found that each species produces two distinct small RNA populations that are predominantly 21- or 25-nucleotides long. We present evidence that 25-nucleotide small RNAs are short-interfering RNAs that silence repetitive genetic elements. In contrast, 21-nucleotide small RNAs are associated with inverted repeats, including a novel microRNA family, and may function at the post-transcriptional level.
Project description:Deep sequencing of small RNAs from three Phytophthora species, P. infestans, P. ramorum and P. sojae, was done to systematically analyze small RNA-generating components of Phytophthora genomes. We found that each species produces two distinct small RNA populations that are predominantly 21- or 25-nucleotides long. We present evidence that 25-nucleotide small RNAs are short-interfering RNAs that silence repetitive genetic elements. In contrast, 21-nucleotide small RNAs are associated with inverted repeats, including a novel microRNA family, and may function at the post-transcriptional level.
Project description:Deep sequencing of small RNAs from three Phytophthora species, P. infestans, P. ramorum and P. sojae, was done to systematically analyze small RNA-generating components of Phytophthora genomes. We found that each species produces two distinct small RNA populations that are predominantly 21- or 25-nucleotides long. We present evidence that 25-nucleotide small RNAs are short-interfering RNAs that silence repetitive genetic elements. In contrast, 21-nucleotide small RNAs are associated with inverted repeats, including a novel microRNA family, and may function at the post-transcriptional level.
Project description:The late blight pathogen, Phytophthora infestans has a broad host range within the Solanaceae family, including yellow potato (Solanum phureja). The disease caused by P. infestans in S. phureja is poorly understood and is a major concern in Colombia. Expressed Sequence Tag (EST) libraries obtained from a normalized library constructed from healthy plant tissue revealed high levels of sequence similarity between S. phureja and S. tuberosum. Then, utilizing Serial Analysis of Gene Expression and high-throughput sequencing (SAGE-Solexa), we characterized yellow potato gene expression during infection by P. infestans. Four-week-old yellow potato plants were inoculated with P. infestans and were collected at 12 and 72 hours post inoculation for RNA extraction. We detected differentially expressed genes by comparing inoculated to non-inoculated and resistant to susceptible plants. The discovery and characterization of the proteins mediating this host–pathogen interaction enable the understanding of the pathosystem and is the key for developing resistant plants. Keywords: SAGE-Solexa, inoculation response, transcript profiling, Solanum phureja, Phytophthora infestans