Project description:We have analyzed, using DNA microarrays, putative differences in gene-expression level between hereditary BRCA1 mutation-linked and sporadic breast cancer. Our results show that a previously reported marked difference between BRCA1-mutation linked and sporadic breast cancer was probably due to uneven stratification of samples with different ER status and basal-like versus luminal-like subtype. We observed that apparent difference between BRCA1-linked and other types of breast cancer found in univariate analysis was diminished when data were corrected for ER status and molecular subtype in multivariate analyses. In fact, the difference in gene expression pattern of BRCA1-mutated and sporadic cancer is very discrete. These conclusions were supported by the results of Q-PCR validation. We also found that BRCA1 gene inactivation due to promoter hypermethylation had similar effect on general gene expression profile as mutation-induced protein truncation. This suggests that in the molecular studies of hereditary breast cancer, BRCA1 gene methylation should be recognized and considered together with gene mutation. We analyzed 35 breast cancer specimens. Surgical samples obtained during mastectomy were flash-frozen in liquid nitrogen and stored at -80°C. Only samples from patients without neoadjuvant chemotherapy were used in this study as chemotherapy may seriously affect gene expression profile. All tissue samples were collected at the Pomeranian Medical University in Szczecin. Seventeen tumor samples were collected from patients with hereditary breast cancer: 12 were derived from tumors affecting women with hereditary BRCA1 mutation, the only one from a woman with BRCA2 mutation, while another eight cases had familial history of breast/ovarian cancer, but were negative for the BRCA1/2 mutations (so called BRCAx cases). Proportion of BRCA1 and BRCA2 mutated tumors was typical for the Polish population. Ten samples were derived from patients with apparently sporadic disease (no familial history of cancer) while 4 patients had a history of familial cancer aggregation (FCA) but without prevalence of breast/ovarian cancers. Thus, these samples were merged with sporadic samples in most of the analyses. All BRCA1 mutation-linked tumors in our study were negative for estrogen receptor (by immunohistochemistry, standard procedures for ER, PGR and HER2 staining were applied), while the only BRCA2-mutated tumor was ER-positive. There were 26 ductal and 5 medullary carcinomas within the study group, which is consistent with the distribution of histopathological types in BRCA1 mutation carriers. Patients were diagnosed at stage T1-2, N0-1 and M0. Caution: this submission contains the data from 6 microarrays done on the normal/pathologically unchanged breast tissue from breast cancer patiets. The data from normal tissues was not analyzed in the paper BRCA1-related gene signature in breast cancer is strongly influenced by ER status and molecular type by Lisowska et al., 2011, Front Biosci (Elite Ed). 2011 Jan 1;3:125-36
Project description:We have analyzed, using DNA microarrays, putative differences in gene-expression level between hereditary BRCA1 mutation-linked and sporadic breast cancer. Our results show that a previously reported marked difference between BRCA1-mutation linked and sporadic breast cancer was probably due to uneven stratification of samples with different ER status and basal-like versus luminal-like subtype. We observed that apparent difference between BRCA1-linked and other types of breast cancer found in univariate analysis was diminished when data were corrected for ER status and molecular subtype in multivariate analyses. In fact, the difference in gene expression pattern of BRCA1-mutated and sporadic cancer is very discrete. These conclusions were supported by the results of Q-PCR validation. We also found that BRCA1 gene inactivation due to promoter hypermethylation had similar effect on general gene expression profile as mutation-induced protein truncation. This suggests that in the molecular studies of hereditary breast cancer, BRCA1 gene methylation should be recognized and considered together with gene mutation.
Project description:Purpose: There is an unmet clinical need for biomarkers to identify breast cancer patients who are at increased risk of developing brain metastases. The objective is to identify gene signatures and biological pathways associated with HER2+ brain metastasis. Experimental Design: Gene expression of 19 HER2+ breast cancer brain metastases was compared with HER2+ nonmetastatic primary tumors. Gene Set Enrichment Analysis was used to identify a signature, which was evaluated for correlation with BRCA1 mutation status and clinical outcome using published microarray datasets and for correlation with pharmacological inhibition by a PARP inhibitor and temozolomide using published microarray datasets of breast cancer cell lines. Results: A BRCA1 Deficient-Like (BD-L) gene signature is significantly correlated with HER2+ metastases in both our and an independent cohort. BD-L signature is enriched in BRCA1 mutation carrier primary tumors and HER2-/ER- sporadic tumors, but high values are found in a subset of ER+ and HER2+ tumors. Elevated BD-L signature in primary tumors is associated with increased risk of overall relapse, brain relapse, and decreased survival. The BD-L signature correlates with pharmacologic response to PARP inhibitor and temozolomide in two independent microarray datasets, and the signature outperformed four published gene signatures of BRCA1/2 deficiency. Conclusions: The BD-L signature is enriched in breast cancer brain metastases and identifies a subset of primary tumors with increased propensity for brain metastasis. Furthermore, this signature may serve as a biomarker to identify sporadic breast cancer patients who could benefit from a therapeutic combination of PARP inhibitor and temozolomide. Gene expression of 19 HER2+ human breast cancer brain metastases was compared with gene expression of 19 HER2+ nonmetastatic primary human breast tumors.
Project description:Purpose: As estrogen receptor (ER)-positive breast cancer in BRCA1 mutation carriers arises at an older age with less aggressive tumor characteristics than ER negative BRCA1 mutated breast cancer, it has been suggested that these tumors are ?sporadic? and not BRCA1-driven. With the introduction of targeted treatments specific for tumors with a non-functioning BRCA1 or BRCA2 gene, the question whether the BRCA genes are impaired in the tumor, is highly relevant. Therefore, we performed genomic profiling of BRCA1-mutated ER+ tumors. Experimental design: Genomic profiling, BRCA1 promoter methylation assessment, and loss of heterozygosity analysis were done on 16 BRCA1-mutated ER+ tumors. Results were compared with 57 BRCA1-mutated ER- tumors, 36 BRCA2-mutated ER+ associated tumors, and 182 sporadic ER+ tumors [GSE9021, GSE9114, GSE16511, GSE50407]. Results: The genomic profile of BRCA1-mutated ER+ tumors was different from BRCA1-mutated ER- breast tumors, but highly similar to BRCA2-mutated ER+ tumors. In 83% of the BRCA1-mutated ER+ tumors, loss of the wildtype BRCA1 allele was observed. In addition, clinico-pathological variables in BRCA1-mutated ER+ cancer were also more similar to BRCA2-mutated ER+ and sporadic ER+ breast cancer than to BRCA1 mutated ER- cancers. Conclusions: As BRCA1-mutated ER+ tumors show a BRCAness copy number profile and LOH, it is likely that the loss of a functional BRCA1 protein plays a role in tumorigenesis in BRCA1-mutated ER+ tumors. Therefore, we hypothesize that these tumors are sensitive to drugs targeting the BRCA1 gene defect, providing new targeted treatment modalities for advanced BRCA-deficient, ER-positive breast cancer.
Project description:Purpose: As estrogen receptor (ER)-positive breast cancer in BRCA1 mutation carriers arises at an older age with less aggressive tumor characteristics than ER negative BRCA1 mutated breast cancer, it has been suggested that these tumors are ?sporadic? and not BRCA1-driven. With the introduction of targeted treatments specific for tumors with a non-functioning BRCA1 or BRCA2 gene, the question whether the BRCA genes are impaired in the tumor, is highly relevant. Therefore, we performed genomic profiling of BRCA1-mutated ER+ tumors. Experimental design: Genomic profiling, BRCA1 promoter methylation assessment, and loss of heterozygosity analysis were done on 16 BRCA1-mutated ER+ tumors. Results were compared with 57 BRCA1-mutated ER- tumors, 36 BRCA2-mutated ER+ associated tumors, and 182 sporadic ER+ tumors [GSE9021, GSE9114, GSE16511, GSE50407] Results: The genomic profile of BRCA1-mutated ER+ tumors was different from BRCA1-mutated ER- breast tumors, but highly similar to BRCA2-mutated ER+ tumors. In 83% of the BRCA1-mutated ER+ tumors, loss of the wildtype BRCA1 allele was observed. In addition, clinico-pathological variables in BRCA1-mutated ER+ cancer were also more similar to BRCA2-mutated ER+ and sporadic ER+ breast cancer than to BRCA1 mutated ER- cancers. Conclusions: As BRCA1-mutated ER+ tumors show a BRCAness copy number profile and LOH, it is likely that the loss of a functional BRCA1 protein plays a role in tumorigenesis in BRCA1-mutated ER+ tumors. Therefore, we hypothesize that these tumors are sensitive to drugs targeting the BRCA1 gene defect, providing new targeted treatment modalities for advanced BRCA-deficient, ER-positive breast cancer.
Project description:Purpose: There is an unmet clinical need for biomarkers to identify breast cancer patients who are at increased risk of developing brain metastases. The objective is to identify gene signatures and biological pathways associated with HER2+ brain metastasis. Experimental Design: Gene expression of 19 HER2+ breast cancer brain metastases was compared with HER2+ nonmetastatic primary tumors. Gene Set Enrichment Analysis was used to identify a signature, which was evaluated for correlation with BRCA1 mutation status and clinical outcome using published microarray datasets and for correlation with pharmacological inhibition by a PARP inhibitor and temozolomide using published microarray datasets of breast cancer cell lines. Results: A BRCA1 Deficient-Like (BD-L) gene signature is significantly correlated with HER2+ metastases in both our and an independent cohort. BD-L signature is enriched in BRCA1 mutation carrier primary tumors and HER2-/ER- sporadic tumors, but high values are found in a subset of ER+ and HER2+ tumors. Elevated BD-L signature in primary tumors is associated with increased risk of overall relapse, brain relapse, and decreased survival. The BD-L signature correlates with pharmacologic response to PARP inhibitor and temozolomide in two independent microarray datasets, and the signature outperformed four published gene signatures of BRCA1/2 deficiency. Conclusions: The BD-L signature is enriched in breast cancer brain metastases and identifies a subset of primary tumors with increased propensity for brain metastasis. Furthermore, this signature may serve as a biomarker to identify sporadic breast cancer patients who could benefit from a therapeutic combination of PARP inhibitor and temozolomide.
Project description:In this study, using microarray technology we did a transcriptome profiling of miRNAs on a group of 52 cases of familial (BRCA1- or BRCA2-mutated, or BRCAX, i.e. familial cases with no mutations in BRCA1 or BRCA2 genes) and sporadic breast cancers. Class comparison of different clinical characteristics of the samples identified miR-342 as the miRNA with the most significant association with estrogen receptor (ER) status (categorised as positive and negative) of the samples analysed. As ER is one of the bio-pathological features currently used in routine clinical practice to aid treatment decision in breast cancer, identification of this miRNA has been promising for finding new mechanisms involved in this tumour type as we had next demonstrated in a cellular model of breast cancer. In the study presented here, microRNAs expression profiling on a well defined cohort of 52 breast cancer cases, followed up for more than 5 years, was used for a class comparison analysis with some relevant clinical characteristics of this tumour type like estrogen, progesterone or epidermal growth factor 2 receptor status.
Project description:In this study, using microarray technology we did a transcriptome profiling of miRNAs on a group of 52 cases of familial (BRCA1- or BRCA2-mutated, or BRCAX, i.e. familial cases with no mutations in BRCA1 or BRCA2 genes) and sporadic breast cancers. Class comparison of different clinical characteristics of the samples identified miR-342 as the miRNA with the most significant association with estrogen receptor (ER) status (categorised as positive and negative) of the samples analysed. As ER is one of the bio-pathological features currently used in routine clinical practice to aid treatment decision in breast cancer, identification of this miRNA has been promising for finding new mechanisms involved in this tumour type as we had next demonstrated in a cellular model of breast cancer.
Project description:Background: Normal cell BRCA1 epimutations have been associated with increased risk of triple-negative breast cancer (TNBC). However, the fraction of TNBCs that may have BRCA1 epimutations as their underlying cause is unknown. Neither are the time of occurrence and the potential inheritance patterns of BRCA1 epimutations established. Methods: To address these questions, we analyzed BRCA1 methylation status in breast cancer tissue and matched white blood cells (WBC) from 408 patients with 411 primary breast cancers, including 66 TNBCs, applying a highly sensitive sequencing assay, allowing allele-resolved methylation assessment. Further, to assess the time of origin and the characteristics of normal cell BRCA1 methylation, we analyzed umbilical cord blood of 1260 newborn girls and 200 newborn boys. Finally, we assessed BRCA1 methylation status among 575 mothers and 531 fathers of girls with (n = 102) and without (n = 473) BRCA1 methylation. Results: We found concordant tumor and mosaic WBC BRCA1 epimutations in 10 out of 66 patients with TNBC and in four out of six patients with estrogen receptor (ER)-low expression (<10%) tumors (combined: 14 out of 72; 19.4%; 95% CI 11.1–30.5). In contrast, we found concordance in only three out of 220 patients with 221 ER≥10% tumors and zero out of 114 patients with 116 HER2-positive tumors. Intraindividually, BRCA1 epimutations affected the same allele in normal and tumor cells. Assessing BRCA1 methylation in umbilical WBCs from girls, we found mosaic, predominantly monoallelic BRCA1 epimutations, with qualitative features similar to those in adults, in 113/1260 (9.0%) of individuals, but no correlation to BRCA1 methylation status either in mothers or fathers. A significantly lower fraction of newborn boys carried BRCA1 methylation (9 / 200; 4.5%) as compared to girls (p = 0.038). Similarly, WBC BRCA1 methylation was found less common among fathers (16/531; 3.0%), as compared to mothers (46 / 575; 8.0%; p = 0.0003). Conclusions: Our findings suggest prenatal BRCA1 epimutations might be the underlying cause of around 20% of TNBC and low-ER expression breast cancers. Such constitutional mosaic BRCA1 methylation likely arise through gender-related mechanisms in utero, independent of Mendelian inheritance.
Project description:Background: Normal cell BRCA1 epimutations have been associated with increased risk of triple-negative breast cancer (TNBC). However, the fraction of TNBCs that may have BRCA1 epimutations as their underlying cause is unknown. Neither are the time of occurrence and the potential inheritance patterns of BRCA1 epimutations established. Methods: To address these questions, we analyzed BRCA1 methylation status in breast cancer tissue and matched white blood cells (WBC) from 408 patients with 411 primary breast cancers, including 66 TNBCs, applying a highly sensitive sequencing assay, allowing allele-resolved methylation assessment. Further, to assess the time of origin and the characteristics of normal cell BRCA1 methylation, we analyzed umbilical cord blood of 1260 newborn girls and 200 newborn boys. Finally, we assessed BRCA1 methylation status among 575 mothers and 531 fathers of girls with (n = 102) and without (n = 473) BRCA1 methylation. Results: We found concordant tumor and mosaic WBC BRCA1 epimutations in 10 out of 66 patients with TNBC and in four out of six patients with estrogen receptor (ER)-low expression (<10%) tumors (combined: 14 out of 72; 19.4%; 95% CI 11.1–30.5). In contrast, we found concordance in only three out of 220 patients with 221 ER≥10% tumors and zero out of 114 patients with 116 HER2-positive tumors. Intraindividually, BRCA1 epimutations affected the same allele in normal and tumor cells. Assessing BRCA1 methylation in umbilical WBCs from girls, we found mosaic, predominantly monoallelic BRCA1 epimutations, with qualitative features similar to those in adults, in 113/1260 (9.0%) of individuals, but no correlation to BRCA1 methylation status either in mothers or fathers. A significantly lower fraction of newborn boys carried BRCA1 methylation (9 / 200; 4.5%) as compared to girls (p = 0.038). Similarly, WBC BRCA1 methylation was found less common among fathers (16/531; 3.0%), as compared to mothers (46 / 575; 8.0%; p = 0.0003). Conclusions: Our findings suggest prenatal BRCA1 epimutations might be the underlying cause of around 20% of TNBC and low-ER expression breast cancers. Such constitutional mosaic BRCA1 methylation likely arise through gender-related mechanisms in utero, independent of Mendelian inheritance.