Project description:To investigate the lncRNAs expression profiling in CD4+ T cells of systemic lupus erythematosus (SLE) patients, we have employed “Agilent Human lncRNA 4*180K microarray” as a discovery platform to identify lncRNAs and mRNAs expression signatures in CD4+ T cells between SLE patients and normal controls. CD4+ T cells were isolated from peripheral blood mononuclear cells (PBMCs) of peripheral blood in SLE patients and normal controls, respectively.
Project description:We established m6A modification profiles using MeRIP-seq in peripheral blood mononuclear cells (PBMCs) from systemic lupus erythematosus (SLE) patients and controls (HC), and investigated m6A-related lncRNAs in SLE for novel potential roles in SLE. Compared with controls, m6A level was lower in SLE patients,426 lncRNAs and 2,331 mRNAs were differentially expressed in SLE patients.
Project description:To further explore the role of long non-coding RNAs in the systemic lupus erythematosus (SLE), we assessed the transcriptome of PBMCs from healthy controls and SLE patients using ncRNA sequencing analysis. The data were analyzed for differential expression with a nominal P<0.05. Our study aimed to discover novel biomarkers for SLE diagnosis and prognosis.
Project description:Peripheral blood mononuclear cells were collected from SLE patients in an observational study performed at the University of Michigan Blood microarray expression data were used to confirm the presence of an Interferon signature and identify additional surrogate genes RNA from PBMCs of SLE patients and normal donor controls were obtained for one time point and were profiled on Affymetrix arrays
Project description:In this study, we analyzed the transcriptomes of ~276k single PBMCs from 33 childhood SLE (cSLE) and 11 healthy matched donors (cHD). Our findings were validated in an independent cohort including 8 adult SLE (aSLE) patients and 6 matched controls (aHD; ~132k PBMCs).
Project description:Aberrant gene expression analysis between peripheral blood mononuclear cells (PBMCs) samples from healthy controls (HC) and patients with systemic lupus erythmatosus (SLE) were identified using Affymetrix gene arrays
Project description:Systemic lupus erythematosus (SLE) is a systemic and heterogeneous autoimmune disease for which its treatment and phosphorylation-dependent regulatory mechanism remain elusive. Here, we aim to explore the molecular mechanism of phosphorylation regulation for SLE. We employed high-throughput Phosphoproteomics of peripheral blood mononuclear cells (PBMCs) from 126 patients with SLE remission stage (SLE_S), 70 patients with SLE active stage (SLE_A), 160 patients with RA, and 135 healthy controls (HC). An independent cohort that included 60 SLE_S, 35 SLE_A, 50 RA and 40 HC was used to validate the phosphosites via parallel reaction monitoring (PRM). We revealed upregulated pathways involved in cell adhesion and migration in patients with SLE (SLE_S and SLE_A) compared with HCs and RA. Expression pattern clustering analysis revealed several specifically upregulated phosphosites, and the leukocyte transendothelial migration was specifically enriched in SLE_A. We predicted several key kinases including MAP3Ks, MAP2Ks, IKKB and TBK1, and found that upregulated kinase activity is associated with increased phosphorylation of VCL, TLN1 and VAPB by kinases-substrate network analysis. These phosphorylated proteins also regulate the pathways related to cell adhesion and migration, and which have not been implicated in previous studies of SLE. Moreover, we validated these phosphosites with the same trend as 4D-LFQ data, including LCP1 S5, TLN1 S1201, TLN1 S1225, VCL S275 and VCL S579. In summary, the present study elucidates the changes of phosphosites, kinases and pathways in SLE, and may provide potentially novel targets for further mechanism exploration.
Project description:Systemic lupus erythematosus (SLE) is a systemic and heterogeneous autoimmune disease for which its treatment and phosphorylation-dependent regulatory mechanism remain elusive. Here, we aim to explore the molecular mechanism of phosphorylation regulation for SLE. We employed high-throughput Phosphoproteomics of peripheral blood mononuclear cells (PBMCs) from 126 patients with SLE remission stage (SLE_S), 70 patients with SLE active stage (SLE_A), 160 patients with RA, and 135 healthy controls (HC). An independent cohort that included 60 SLE_S, 35 SLE_A, 50 RA and 40 HC was used to validate the phosphosites via parallel reaction monitoring (PRM). We revealed upregulated pathways involved in cell adhesion and migration in patients with SLE (SLE_S and SLE_A) compared with HCs and RA. Expression pattern clustering analysis revealed several specifically upregulated phosphosites, and the leukocyte transendothelial migration was specifically enriched in SLE_A. We predicted several key kinases including MAP3Ks, MAP2Ks, IKKB and TBK1, and found that upregulated kinase activity is associated with increased phosphorylation of VCL, TLN1 and VAPB by kinases-substrate network analysis. These phosphorylated proteins also regulate the pathways related to cell adhesion and migration, and which have not been implicated in previous studies of SLE. Moreover, we validated these phosphosites with the same trend as 4D-LFQ data, including LCP1 S5, TLN1 S1201, TLN1 S1225, VCL S275 and VCL S579. In summary, the present study elucidates the changes of phosphosites, kinases and pathways in SLE, and may provide potentially novel targets for further mechanism exploration.