Project description:Microbial diversity in geothermal waters of the Unkeshwar hot springs in Maharashtra, India, was studied using 16S rRNA amplicon metagenomic sequencing. Taxonomic analysis revealed the presence of Bacteroidetes, Proteobacteria, Cyanobacteria, Actinobacteria, Archeae, and OD1 phyla. Metabolic function prediction analysis indicated a battery of biological information systems indicating rich and novel microbial diversity, with potential biotechnological applications in this niche.
Project description:Yellowstone National Park hydrothermal springs were investigated according to their organic geochemistry with a special focus on the Yellowstone hot spring dissolved organic matter (YDOM) that was solid-phase extracted. Here we show that YDOM has a unique chemodiversity that has not yet been observed anywhere else in aquatic surface environments and that Yellowstone hot springs are organic chemodiversity hot spots. Four main geochemically classified hot spring types (alkaline-chloride, mixed alkaline-chloride, acid-chloride-sulfate and travertine-precipitating) exhibited distinct organic molecular signatures that correlated remarkably well with the known inorganic geochemistry and manifested themselves in excitation emission matrix fluorescence, nuclear magnetic resonance, and ultrahigh resolution mass spectra. YDOM contained thousands of molecular formulas unique to Yellowstone of which 80% contained sulfur, even in low hydrogen sulfide containing alkaline-chloride springs. This unique YDOM reflects the extreme organic geochemistry present in the hydrothermal features of Yellowstone National Park.
Project description:Glycerol dialkyl glycerol tetraethers (GDGTs) are core membrane lipids of the Crenarchaeota. The structurally unusual GDGT crenarchaeol has been proposed as a taxonomically specific biomarker for the marine planktonic group I archaea. It is found ubiquitously in the marine water column and in sediments. In this work, samples of microbial community biomass were obtained from several alkaline and neutral-pH hot springs in Nevada, United States. Lipid extracts of these samples were analyzed by high-performance liquid chromatography-mass spectrometry and by gas chromatography-mass spectrometry. Each sample contained GDGTs, and among these compounds was crenarchaeol. The distribution of archaeal lipids in Nevada hot springs did not appear to correlate with temperature, as has been observed in the marine environment. Instead, a significant correlation with the concentration of bicarbonate was observed. Archaeal DNA was analyzed by denaturing gradient gel electrophoresis. All samples contained 16S rRNA gene sequences which were more strongly related to thermophilic crenarchaeota than to Cenarchaeum symbiosum, a marine nonthermophilic crenarchaeon. The occurrence of crenarchaeol in environments containing sequences affiliated with thermophilic crenarchaeota suggests a wide phenotypic distribution of this compound. The results also indicate that crenarchaeol can no longer be considered an exclusive biomarker for marine species.
Project description:Thermophilic viruses were reported decades ago; however, knowledge of their diversity, biology, and ecological impact is limited. Previous research on thermophilic viruses focused on cultivated strains. This study examined metagenomic profiles of viruses directly isolated from two mildly alkaline hot springs, Bear Paw (74 degrees C) and Octopus (93 degrees C). Using a new method for constructing libraries from picograms of DNA, nearly 30 Mb of viral DNA sequence was determined. In contrast to previous studies, sequences were assembled at 50% and 95% identity, creating composite contigs up to 35 kb and facilitating analysis of the inherent heterogeneity in the populations. Lowering the assembly identity reduced the estimated number of viral types from 1,440 and 1,310 to 548 and 283, respectively. Surprisingly, the diversity of viral species in these springs approaches that in moderate-temperature environments. While most known thermophilic viruses have a chronic, nonlytic infection lifestyle, analysis of coding sequences suggests lytic viruses are more common in geothermal environments than previously thought. The 50% assembly included one contig with high similarity and perfect synteny to nine genes from Pyrobaculum spherical virus (PSV). In fact, nearly all the genes of the 28-kb genome of PSV have apparent homologs in the metagenomes. Similarities to thermoacidophilic viruses isolated on other continents were limited to specific open reading frames but were equally strong. Nearly 25% of the reads showed significant similarity between the hot springs, suggesting a common subterranean source. To our knowledge, this is the first application of metagenomics to viruses of geothermal origin.
Project description:This retrospective study included 10 eyes of 9 patients diagnosed with microsporidial keratitis. All of them were known to contract this disease after taking baths in hot springs. The disease was diagnosed based on detecting microsporidia in corneal scrapings using Gram stain and the modified Kinyoun's acid-fast stain. The specimens from the last six patients were subjected to PCR and then sequencing. All of them revealed that the microorganism identified has a high similarity to Vittaforma corneae. Repeated debridement of the epithelial lesions successfully eradicated the microsporidial infection in all nine patients.
Project description:Nitrifying microorganisms occur across a wide temperature range from 4 to 84 °C and previous studies in geothermal systems revealed their activity under extreme conditions. Archaea were detected to be responsible for the first step of nitrification, but it is still a challenging issue to clarify the identity of heat-tolerant nitrite oxidizers. In a long-term cultivation approach, we inoculated mineral media containing ammonium and nitrite as substrates with biofilms and sediments of two hot springs in Yellowstone National Park (USA). The nitrifying consortia obtained at 70 °C consisted mostly of novel Chloroflexi as revealed by metagenomic sequencing. Among these, two deep-branching novel Chloroflexi were identified as putative nitrite-oxidizing bacteria (NOB) by the presence of nitrite oxidoreductase encoding genes in their genomes. Stoichiometric oxidation of nitrite to nitrate occurred under lithoautotrophic conditions, but was stimulated by organic matter. Both NOB candidates survived long periods of starvation and the more abundant one formed miniaturized cells and was heat resistant. This detection of novel thermophilic NOB exemplifies our still incomplete knowledge of nitrification, and indicates that nitrite oxidation might be an ancient and wide-spread form of energy conservation.
Project description:The Kuril Islands are located in the Far-East of Russia and enriched with shallow and terrestrial hot springs. Prokaryotic diversity of Kuril geothermal environments has been studied fragmentarily and mainly by culture-dependent methods. We performed the first large-scale investigation of microbial communities, inhabited more than 30 terrestrial hot springs of Kunashir and Iturup Islands, analyzed by 16S rRNA gene fragment amplicon sequencing, together with chemical analysis of thermal waters and sediments. The Circumneutral Bacterial group containing springs with pH 5.7-8.5 and temperature 40-79 °C possessed the highest biodiversity and consisted almost entirely of Bacteria. Cyanobacteriota (the Leptolyngbyaceae and Oculatellaceae families) and phototrophic Chloroflexota dominated in the microbial mats in hot springs with temperatures up to 60 °C. The higher temperature ones were dominated by Aquificota (Sulfurihydrogenibium and Hydrogenobacter species). The Acidic Bacterial group (pH 2.2-3.6, 41-64 °C) inhabited by the genera Acidithiobacillus, Hydrogenobaculum and Thiomonas. Archaea of Acidianus, Metallosphaera, Thermoplasma and Caldisphaera spp. as well as uncultivated lineages ('Ca. Marsarchaeales', 'Ca. Caldiarchaeum', BSLdp215) were abundant in the Acidic Archaeal group (pH 1.5-2.9, 50-94 °C). The microbial composition of the Kuril hot springs strongly correlated with pH and moderately correlated with water chemistry, while degree of correlation between the communities' compositions with temperature and location was low.
Project description:In the present study, physicochemical and microbial diversity analyses of seven Indian hot springs were performed. The temperature at the sample sites ranged from 32 to 67°C, and pH remained neutral to slightly alkaline. pH and temperature influenced microbial diversity. Culture-independent microbial diversity analysis suggested bacteria as the dominant group (99.3%) when compared with the archaeal group (0.7%). Alpha diversity analysis showed that microbial richness decreased with the increase of temperature, and beta diversity analysis showed clustering based on location. A total of 131 strains (divided into 12 genera and four phyla) were isolated from the hot spring samples. Incubation temperatures of 37 and 45°C and T5 medium were more suitable for bacterial isolation. Some of the isolated strains shared low 16S rRNA gene sequence similarity, suggesting that they may be novel bacterial candidates. Some strains produced thermostable enzymes. Dominant microbial communities were found to be different depending on the culture-dependent and culture-independent methods. Such differences could be attributed to the fact that most microbes in the studied samples were not cultivable under laboratory conditions. Culture-dependent and culture-independent microbial diversities suggest that these springs not only harbor novel microbial candidates but also produce thermostable enzymes, and hence, appropriate methods should be developed to isolate the uncultivated microbial taxa.