Project description:Histone deacetylase inhibitors (HDACIs) interfere with the epigenetic process of histone acetylation and are known to have analgesic properties in models of chronic inflammatory pain. The aim of this study was to determine whether these compounds could also affect neuropathic pain. Different class I HDACIs were delivered intrathecally into rat spinal cord in models of traumatic nerve injury and antiretroviral drug-induced peripheral neuropathy (stavudine, d4T). Mechanical and thermal hypersensitivity was attenuated by 40% to 50% as a result of HDACI treatment, but only if started before any insult. The drugs globally increased histone acetylation in the spinal cord, but appeared to have no measurable effects in relevant dorsal root ganglia in this treatment paradigm, suggesting that any potential mechanism should be sought in the central nervous system. Microarray analysis of dorsal cord RNA revealed the signature of the specific compound used (MS-275) and suggested that its main effect was mediated through HDAC1. Taken together, these data support a role for histone acetylation in the emergence of neuropathic pain. n = 4, HDACi treated vs. vehicle treated. Injured ipsilateral DRG after L5 spinal nerve transection. Spinal cord tissue was run in a separate Affymetrix experiment.
Project description:Histone deacetylase inhibitors (HDACIs) interfere with the epigenetic process of histone acetylation and are known to have analgesic properties in models of chronic inflammatory pain. The aim of this study was to determine whether these compounds could also affect neuropathic pain. Different class I HDACIs were delivered intrathecally into rat spinal cord in models of traumatic nerve injury and antiretroviral drug-induced peripheral neuropathy (stavudine, d4T). Mechanical and thermal hypersensitivity was attenuated by 40% to 50% as a result of HDACI treatment, but only if started before any insult. The drugs globally increased histone acetylation in the spinal cord, but appeared to have no measurable effects in relevant dorsal root ganglia in this treatment paradigm, suggesting that any potential mechanism should be sought in the central nervous system. Microarray analysis of dorsal cord RNA revealed the signature of the specific compound used (MS-275) and suggested that its main effect was mediated through HDAC1. Taken together, these data support a role for histone acetylation in the emergence of neuropathic pain. n = 4, HDACi treated vs. vehicle treated. Ipsilateral dorsal spinal cord tissue after L5 spinal nerve transection, DRG tissue was run in a separate Affymetrix experiment.
Project description:Sensitization of spinal nociceptive circuits plays a cardinal role in neuropathic pain. This sensitization depends on new gene expression that is primarily regulated via transcriptional and translational control mechanisms. The relative roles of these mechanisms in regulating gene expression in the clinically relevant chronic phase of neuropathic pain are not well understood. Here, we show that changes in gene expression in the spinal cord during the chronic phase of neuropathic pain are substantially regulated at the translational level. Downregulating spinal translation at the chronic phase alleviated pain hypersensitivity. Cell-type-specific profiling revealed that spinal inhibitory neurons exhibited greater changes in translation after peripheral nerve injury compared to excitatory neurons. Notably, increasing translation selectively in all inhibitory neurons or parvalbumin-positive (PV + ) interneurons, but not excitatory neurons, promoted mechanical pain hypersensitivity. Furthermore, increasing translation in PV + neurons decreased their intrinsic excitability and spiking activity, whereas reducing translation in spinal PV + neurons prevented the nerve injury-induced decrease in excitability. Thus, translational control mechanisms in the spinal cord, primarily in inhibitory neurons, play a critical role in mediating neuropathic pain hypersensitivity.
Project description:Astrocytes in the spinal cord dorsal horn (SDH) play a pivotal role in synaptic transmission and neuropathic pain. However, the precise classification of SDH astrocytes in health and disease remains elusive. Here we reveal Gpr37l1 as a marker and functional regulator of spinal astrocytes. Through single-nucleus RNA sequencing, we identified Gpr37l1 as a selective GPCR marker for spinal cord astrocytes. Notably, SDH displayed reactive astrocyte phenotypes and exacerbated neuropathic pain following nerve injury combined with Gpr37l1 deficiency. In naïve animals, GPR37L1 knockdown in SDH astrocytes induces astrogliosis and pain hypersensitivity, while Gpr37l1-/- mice fail to recover from neuropathic pain. GPR37L1 activation by maresin-1 increased astrocyte GLT-1 activity and reduced spinal EPSCs and neuropathic pain. Selective overexpression of Gpr37l1 in SDH astrocytes reversed neuropathic pain and astrogliosis after nerve injury. Our findings illuminate astrocyte GPR37l1 as an essential negative regulator of pain, which protects neuropathic pain through astrocyte signaling in SDH.
Project description:Histone deacetylase inhibitors (HDACIs) interfere with the epigenetic process of histone acetylation and are known to have analgesic properties in models of chronic inflammatory pain. The aim of this study was to determine whether these compounds could also affect neuropathic pain. Different class I HDACIs were delivered intrathecally into rat spinal cord in models of traumatic nerve injury and antiretroviral drug-induced peripheral neuropathy (stavudine, d4T). Mechanical and thermal hypersensitivity was attenuated by 40% to 50% as a result of HDACI treatment, but only if started before any insult. The drugs globally increased histone acetylation in the spinal cord, but appeared to have no measurable effects in relevant dorsal root ganglia in this treatment paradigm, suggesting that any potential mechanism should be sought in the central nervous system. Microarray analysis of dorsal cord RNA revealed the signature of the specific compound used (MS-275) and suggested that its main effect was mediated through HDAC1. Taken together, these data support a role for histone acetylation in the emergence of neuropathic pain.
Project description:Histone deacetylase inhibitors (HDACIs) interfere with the epigenetic process of histone acetylation and are known to have analgesic properties in models of chronic inflammatory pain. The aim of this study was to determine whether these compounds could also affect neuropathic pain. Different class I HDACIs were delivered intrathecally into rat spinal cord in models of traumatic nerve injury and antiretroviral drug-induced peripheral neuropathy (stavudine, d4T). Mechanical and thermal hypersensitivity was attenuated by 40% to 50% as a result of HDACI treatment, but only if started before any insult. The drugs globally increased histone acetylation in the spinal cord, but appeared to have no measurable effects in relevant dorsal root ganglia in this treatment paradigm, suggesting that any potential mechanism should be sought in the central nervous system. Microarray analysis of dorsal cord RNA revealed the signature of the specific compound used (MS-275) and suggested that its main effect was mediated through HDAC1. Taken together, these data support a role for histone acetylation in the emergence of neuropathic pain.
Project description:Treating neuropathic pain is challenging and novel non-opioid based medicines are needed. Using unbiased receptomics, transcriptomic analyses, immunofluorescence and in situ hybridization, expression of the orphan GPCR (oGPCR) GPR160 increased in the rodent dorsal horn of the spinal cord (DH-SC) following traumatic nerve injury. Genetic and immunopharmacological approaches demonstrated that GPR160 inhibition in the spinal cord prevented and reversed neuropathic pain in male and female rodents without altering normal pain response. GPR160 inhibition in the spinal cord attenuated sensory processing in the thalamus, a key relay in the sensory discriminative pathways of pain. We also identified cocaine- and amphetamine-regulated transcript peptide (CARTp) as a GPR160 ligand. Inhibiting endogenous CARTp signaling in spinal cord attenuated neuropathic pain, whereas exogenous intrathecal (i.th.) CARTp evoked painful hypersensitivity through GPR160-dependent ERK and cAMP response element-binding protein (CREB). Our findings de-orphanize GPR160, identify it as a determinant of neuropathic pain and potential therapeutic target, and provide insights to its signaling pathways. CARTp is involved in many diseases including depression, reward and addiction, de-orphanization of GPR160 is a major step forward understanding the role of CARTp signaling in health and disease.
Project description:Neuropathic pain is one of the most intractable pain conditions associated with tumor growth compressing and damaging nerves. A troublesome hallmark symptom of neuropathic pain is hypersensitivity to innocuous stimuli, known as “tactile allodynia,” which is often refractory to currently available analgesics. Diurnal variations in pain hypersensitivity are common in patients with cancer, but the underlying mechanisms are enigmatic. Herein, we report that spinal expression of lipocalin-2 (LCN2) enhances pain sensitivity of NCTC2472 fibrosarcoma-implanted male mice during specific stages of the diurnal cycle. As the tumor grew, interleukin-6 (IL-6) levels increased in the spinal cord of the mice. Increased IL-6 levels stimulated LCN2 expression in spinal microglia, but this expression was periodically repressed by the circadian clock components REV-ERBα and REV-ERBβ. Notably, intra-spinal dorsal horn injection of lentiviral vectors expressing REV-ERBα or REV-ERBβ in tumor-bearing mice alleviated tactile allodynia. Furthermore, intrathecal injection of SR9009, a synthetic agonist of REV-ERBs, also attenuated cancer-induced pain hypersensitivity, accompanied by suppressing spinal LCN2 expression. These results suggest that temporal elevation of LCN2 expression decreases the threshold of tactile pain hypersensitivity induced by tumor growth. We propose that the circadian clock component of REV-ERBs is an effective target for alleviation of cancer-induced tactile allodynia, identifying a new class of analgesic agents.