Project description:Enterohaemorrhagic E. coli (EHEC) is a significant human pathogens that cause outbreaks of haemorrhagic colitis and haemolytic uremic syndrome. During infection, pathogens compete for iron with the host, and one mechanism by which EHEC obtains iron is through haem uptake and utilitisation which is encoded by the chu operon. We have demonstrated that the haem receptor chuA is regulated by the Crp-cAMP-dependent sRNA CyaR. We further demonstrate that activation of chuA by CyaR is independent of the chuA RNA-thermometer and termination by Rho. These results highlight the ability of regulatory sRNAs to integrate multiple environmental signals into a layered hierarchy of signal input.
Project description:Transcript abundance in Escherichia coli O157:H7 was determined in the presence or absence of pulsed expression of the small RNA, AsxR.
Project description:Pathogenic biofilms have been associated with persistent infections due to their high resistance to antimicrobial agents. To identify non-toxic biofilm inhibitors for enterohemorrhagic Escherichia coli O157:H7, indole-3-acetaldehyde was used and reduced E. coli O157:H7 biofilm formation. Global transcriptome analyses revealed that indole-3-acetaldehyde most repressed two curli operons, csgBAC and csgDEFG, and induced tryptophanase (tnaAB) in E. coli O157:H7 biofilm cells. Electron microscopy showed that indole-3-acetaldehyde reduced curli production in E. coli O157:H7. Together, this study shows that Actinomycetales are an important resource of biofilm inhibitors as well as antibiotics.
Project description:Transcript abundance in Escherichia coli O157:H7 was determined in the presence or absence of pulsed expression of the small RNA, AsxR. AsxR was cloned under the control the arabinose inducible promoter Para. Escherichia coli O157:H7 str. TUV93-0 with pAsxR or empty vector was cultured in MEM-HEPES media to an OD600 of 0.8 and 0.2% arabinose added. 10min after addition of arabinose 10ml of cells were harvested and and pellets resuspended in 1ml of Trizol and total RNA isolated. RNAs were labelled using the SuperScript Plus indirect cDNA labelling System. Triplicate control RNAs were pooled and hybridised to seperate AsxR test RNAs on three microarays. Arrays were hybridised using the Maui hybridisation platform and Scann using and Axon Autoloader Scanner. GenePix software was used to analyse images and GPR files were analysed using Genespring 7.3.1.
Project description:Integrating laterally acquired virulence genes into the backbone regulatory network is important for the pathogenesis of Escherichia coli O157:H7, which has captured many virulence genes through horizontal transfer during evolution. GadE is an essential transcriptional activator of the glutamate decarboxylase (GAD) system, the most efficient acid resistance (AR) mechanism in E. coli. The full contribution of GadE to the AR and virulence of E. coli O157:H7 remains largely unknown. We inactivated gadE in E. coli O157:H7 Sakai and compared global transcription profiles of the mutant with that of the wild type in the exponential and stationary phases of growth. Inactivation of gadE significantly altered the expression of 60 genes independently of the growth phase and of 122 genes in a growth phase-dependent manner. Inactivation of gadE markedly downregulated the expression of gadA, gadB, and gadC and of many acid fitness island genes. Nineteen genes encoded on the locus of enterocyte effacement (LEE), including ler, showed a significant increase in expression upon gadE inactivation. Inactivation of ler in the DeltagadE strain reversed the effect of gadE deletion on LEE expression, indicating that Ler is necessary for LEE repression by GadE. GadE is also involved in downregulation of LEE expression under conditions of moderately acidic pH. Characterization of AR of the DeltagadE strain revealed that GadE is indispensable for a functional GAD system and for survival of E. coli O157:H7 in a simulated gastric environment. Altogether, these data indicate that GadE is critical for the AR of E. coli O157:H7 and that it plays an important role in virulence by downregulating expression of LEE.