Project description:In order to investigate the diurnal oscillations of ruminal protozoa, and their responses to the changes in different feeding patterns, we conducted an animal experiment by feeding the sheep ad libitum with a hay-based diet (50% of alfalfa hay and 46% of oats hay) and a grain-based diet (45% of corn meal and 11% of soybean meal) for 30 days, and ruminal fluid samples were collected at six different timepoints from T2 to T22 in one day, and the composition and diversity of the protozoal communities in rumen microbiomes of the sheep in the Grain-diet and Hay-diet groups at different timepoints were analyzed through 18S rRNA sequencing.
Project description:Abstract - 18S nonfunctional rRNA decay (NRD) detects and eliminates translationally nonfunctional 18S rRNA. While this process is critical for ribosome quality control, the mechanisms underlying nonfunctional 18S rRNA turnover remain elusive, particularly in mammals. Here, we show that mammalian 18S NRD initiates through the integrated stress response (ISR) via GCN2. Nonfunctional 18S rRNA induces translational arrest at start sites. Biochemical analyses demonstrate that ISR activation limits translation initiation and attenuates collisions between scanning 43S preinitiation complexes and stalled nonfunctional ribosomes. The ISR promotes 18S NRD and 40S ribosomal protein turnover by RNF10-mediated ubiquitination. Ultimately, RIOK3 binds the resulting ubiquitinated 40S subunits and facilitates 18S rRNA decay. Overall, mammalian 18S NRD acts through GCN2, followed by ubiquitin-dependent 18S rRNA degradation involving the ubiquitin E3 ligase RNF10 and the atypical protein kinase RIOK3. These findings establish a dynamic feedback mechanism by which the GCN2-RNF10-RIOK3 axis surveils ribosome functionality at the translation initiation step.
Project description:RNA sequencing (RNA-seq) has become a standard method for quantifying gene expression transcriptome-wide. Due to the extremely high proportion of ribosomal RNA (rRNA) in total RNA, sequencing libraries usually incorporate messenger RNA (mRNA) enrichment. Although polyadenylate (poly(A)) tail selection is widely used, many applications require alternate approaches such as rRNA depletion. Recently, selective rRNA digestion, using RNaseH and antisense DNA oligomers that tile the length of target RNAs, has emerged as an easy, cost-effective alternative to commercial rRNA depletion kits. Here, we present a streamlined RNaseH-mediated rRNA depletion method that uses shorter antisense oligos that only sparsely tile the target RNA, in a digestion reaction of only 5 minutes. We wrote a Web tool, Oligo-ASST, that simplifies oligo design to favor target regions with optimal thermodynamic properties, and additionally allows users to design common oligo pools that can simultaneously target divergent RNAs in their regions of higher sequence similarity. We demonstrate the efficacy of these oligos by building rRNA-depleted sequencing libraries for Xenopus laevis as well as zebrafish, which expresses two distinct versions of the 28S, 18S, 5.8S, and 5S rRNAs during embryogenesis. These libraries efficiently deplete rRNA to <5% of total reads, on par with poly(A) selection, and also reveal expression of many non-adenylated RNA species. Oligo-ASST is freely available at https://mtleelab.pitt.edu/oligo to design antisense oligos for any taxon or to target any abundant RNA for depletion.
Project description:The 18S rRNA sequence is highly conserved, particularly at its 3’-end, which is formed by the endonuclease Nob1. How Nob1 identifies its target sequence is not known, and in vitro experiments have shown Nob1 to be error-prone. Moreover, the sequence around the 3’-end is degenerate with similar sites nearby. Here we used yeast genetics, biochemistry, and next generation sequencing to investigate a role for the ATPase Rio1 in monitoring the accuracy of the 18S rRNA 3’-end. We demonstrate that Nob1 can miscleave its rRNA substrate and that miscleaved rRNA accumulates upon bypassing the Rio1-mediated quality control step, but not in healthy cells with intact quality control mechanisms. Mechanistically, we show that Rio1 binding to miscleaved rRNA is weaker than its binding to accurately processed 18S rRNA. Accordingly, excess Rio1 results in accumulation of miscleaved rRNA. Ribosomes containing miscleaved rRNA can translate, albeit more slowly, thereby inviting collisions with trailing ribosomes. These collisions result in degradation of the defective ribosomes utilizing parts of the machinery for mRNA quality control. Altogether, the data support a model in which Rio1 inspects the 3’-end of the nascent 18S rRNA to prevent miscleaved 18S rRNA-containing ribosomes from erroneously engaging in translation, where they induce ribosome collisions. The data also demonstrate how ribosome collisions purify cells of altered ribosomes with different functionalities, with important implications for the concept of ribosome heterogeneity.
Project description:18S nonfunctional rRNA decay (NRD) detects and eliminates translationally nonfunctional 18S rRNA. The underlying mechanisms associated with the detection and turnover of nonfunctional 18S rRNA remain elusive. While NRD has been identified and exclusively studied in Saccharomyces cerevisiae, it is unclear whether this quality control pathway exists in mammals. Here we demonstrate the conservation of 18S NRD in mammalian cells. Using genome-wide CRISPR genetic interaction screens, we identify two molecular events triggered by nonfunctional 18S rRNA— activation of the integrated stress response (ISR) and ubiquitination of ribosomal proteins elicited by GCN2 and RNF10, respectively. Selective ribosome profiling reveals nonfunctional 18S rRNA induces translation arrest at start sites. Biochemical analyses show that activation of the ISR limits translation initiation, attenuating collisions between scanning 43S preinitiation complexes and nonfunctional 80S ribosomes arrested at start sites. Thus, the ISR facilitates the turnover of nonfunctional 18S rRNA and 40S ribosomal proteins by RNF10-mediated ubiquitination. Altogether, these results establish a dynamic feedback mechanism by which cells finetune translation initiation to enable ribosome functionality surveillance through the GCN2-RNF10 axis.
Project description:18S nonfunctional rRNA decay (NRD) detects and eliminates translationally nonfunctional 18S rRNA. The underlying mechanisms associated with the detection and turnover of nonfunctional 18S rRNA remain elusive. While NRD has been identified and exclusively studied in Saccharomyces cerevisiae, it is unclear whether this quality control pathway exists in mammals. Here we demonstrate the conservation of 18S NRD in mammalian cells. Using genome-wide CRISPR genetic interaction screens, we identify two molecular events triggered by nonfunctional 18S rRNA— activation of the integrated stress response (ISR) and ubiquitination of ribosomal proteins elicited by GCN2 and RNF10, respectively. Selective ribosome profiling reveals nonfunctional 18S rRNA induces translation arrest at start sites. Biochemical analyses show that activation of the ISR limits translation initiation, attenuating collisions between scanning 43S preinitiation complexes and nonfunctional 80S ribosomes arrested at start sites. Thus, the ISR facilitates the turnover of nonfunctional 18S rRNA and 40S ribosomal proteins by RNF10-mediated ubiquitination. Altogether, these results establish a dynamic feedback mechanism by which cells finetune translation initiation to enable ribosome functionality surveillance through the GCN2-RNF10 axis.
Project description:18S nonfunctional rRNA decay (NRD) detects and eliminates translationally nonfunctional 18S rRNA. The underlying mechanisms associated with the detection and turnover of nonfunctional 18S rRNA remain elusive. While NRD has been identified and exclusively studied in Saccharomyces cerevisiae, it is unclear whether this quality control pathway exists in mammals. Here we demonstrate the conservation of 18S NRD in mammalian cells. Using genome-wide CRISPR genetic interaction screens, we identify two molecular events triggered by nonfunctional 18S rRNA— activation of the integrated stress response (ISR) and ubiquitination of ribosomal proteins elicited by GCN2 and RNF10, respectively. Selective ribosome profiling reveals nonfunctional 18S rRNA induces translation arrest at start sites. Biochemical analyses show that activation of the ISR limits translation initiation, attenuating collisions between scanning 43S preinitiation complexes and nonfunctional 80S ribosomes arrested at start sites. Thus, the ISR facilitates the turnover of nonfunctional 18S rRNA and 40S ribosomal proteins by RNF10-mediated ubiquitination. Altogether, these results establish a dynamic feedback mechanism by which cells finetune translation initiation to enable ribosome functionality surveillance through the GCN2-RNF10 axis.