ABSTRACT: Novel Immunotherapy-Induced Tertiary Lymphoid Aggregates Accumulate as Intratumoral Nodal Structures of Immune Regulation in Pancreatic Cancer
Project description:Immunotherapy provides an alternative approach for cancer treatment. However, in-depth analyses of the effects of immunotherapy on the tumor microenvironment (TME) have not been conducted in non-melanoma tumors. Here we describe changes in the pancreatic ductal adenocarcinoma (PDAC) TME following immunotherapy treatment, and show for the first time that vaccine-based immunotherapy directly alters the TME, inducing neogenesis of tertiary lymphoid structures that convert immunologically quiescent tumors into immunologically active tumors. Alterations in five pathways important for immune modulation and lymphoid structure development (TH17/Treg, NFkB, Ubiquitin-proteasome, Chemokines/chemokine receptors, and Integrins/adhesion molecules) in vaccine-induced intratumoral lymphoid aggregates were associated with improved post-vaccination responses. Additional studies in other cancers and patients treated with other forms of immunotherapy are warranted to further develop signatures defined in intratumoral lymphoid structures into biomarkers that predict effective anti-tumor immune responses. These signatures may also expose therapeutic targets for promoting more robust antitumor immune responses in the TME. Between July 2008 and September 2012, 59 patients were enrolled into an ongoing study of an irradiated, allogeneic GM-CSF-secreting pancreatic tumor vaccine (GVAX) administered intradermally either alone or in combination with immune modulatory doses of cyclophophamide (Cy) as neoadjuvant and adjuvant treatment for patients with resectable pancreatic ductal adenocarcinoma (PDAC). Patients were randomized 1:1:1 to 3 treatment arms. In Arm A, patients received GVAX alone; in Arm B, patients received GVAX plus a single intravenous dose of Cy at 200 mg/m2 1 day prior to each vaccination; in Arm C, patients received GVAX plus oral Cy at 100 mg once daily for 1 week on and 1 week off. Up to 6 GVAX treatments were administered and all of the patients remained in their initial treatment arms throughout the duration of the study. All 59 of the patients received the 1st GVAX treatment 2 weeks +/-4 days prior to surgery. Formalin-fixed paraffin-embedded (FFPE) tissue blocks of surgically resected PDAC were obtained from the pathology archive. FFPE tissue blocks from each subject were stained by H&E immediately before the vaccine therapy-induced lymphoid aggregates were microdissected . To better understand the functional status of these vaccine therapy induced lymphoid aggregate structures, gene microarray analysis on RNA isolated from microdissected lymphoid aggregates was performed. Gene expression was compared among samples grouped according to patient overall survival, post-vaccination induction of enhanced mesothelin-specific T cell responses in peripheral blood lymphocytes (PBL), and the intratumoral CD8+ T effector to FoxP3+ Treg ratio. Post-vaccination induction of enhanced mesothelin-specific T cell responses has been reported to correlate with longer survival in patients treated with Panc GVAX.
Project description:Immunotherapy provides an alternative approach for cancer treatment. However, in-depth analyses of the effects of immunotherapy on the tumor microenvironment (TME) have not been conducted in non-melanoma tumors. Here we describe changes in the pancreatic ductal adenocarcinoma (PDAC) TME following immunotherapy treatment, and show for the first time that vaccine-based immunotherapy directly alters the TME, inducing neogenesis of tertiary lymphoid structures that convert immunologically quiescent tumors into immunologically active tumors. Alterations in five pathways important for immune modulation and lymphoid structure development (TH17/Treg, NFkB, Ubiquitin-proteasome, Chemokines/chemokine receptors, and Integrins/adhesion molecules) in vaccine-induced intratumoral lymphoid aggregates were associated with improved post-vaccination responses. Additional studies in other cancers and patients treated with other forms of immunotherapy are warranted to further develop signatures defined in intratumoral lymphoid structures into biomarkers that predict effective anti-tumor immune responses. These signatures may also expose therapeutic targets for promoting more robust antitumor immune responses in the TME.
Project description:Tertiary lymphoid structures are immune cell aggregates linked with cancer outcomes, but their interactions with tumour cell aggregates are unclear. Using nasopharyngeal carcinoma as a model, we analyse single-cell transcriptomes of 343,829 cells from 77 biopsy and blood samples and spatially-resolved transcriptomes of 31,316 spots from 15 tumours to decipher their components and interactions with tumour cell aggregates. We identify essential cell populations in tertiary lymphoid structure, including CXCL13+ cancer-associated fibroblasts, stem-like CXCL13+CD8+ T cells, and B and T follicular helper cells. Our study shows that germinal centre reaction matures plasma cells. These plasma cells intersperse with tumour cell aggregates, promoting apoptosis of EBV-related malignant cells and enhancing immunotherapy response. CXCL13+ cancer-associated fibroblasts promote B cell adhesion and antibody production, activating CXCL13+CD8+ T cells that become exhausted in tumour cell aggregates. Tertiary lymphoid structure-related cell signatures correlate with prognosis and PD-1 blockade response, offering insights for therapeutic strategies in cancers.
Project description:The lack of T cell infiltrates is a major obstacle to effective immunotherapy in cancer. Conversely, the formation of tumor-associated tertiary-lymphoid-like structures (TA-TLLSs), which are the local site of humoral and cellular immune responses against cancers, is associated with good prognosis, and they have recently been detected in immune checkpoint blockade (ICB)-responding patients. However, how these lymphoid aggregates develop remains poorly understood. By employing single-cell transcriptomics, endothelial fate mapping, and functional multiplex immune profiling, we demonstrate that antiangiogenic immune-modulating therapies evoke transdifferentiation of postcapillary venules into inflamed high-endothelial venules (HEVs) via lymphotoxin/lymphotoxin beta receptor (LT/LTβR) signaling. In turn, tumor HEVs boost intratumoral lymphocyte influx and foster permissive lymphocyte niches for PD1- and PD1+TCF1+ CD8 T cell progenitors that differentiate into GrzB+PD1+ CD8 T effector cells. Tumor-HEVs require continuous CD8 and NK cell-derived signals revealing that tumor HEV maintenance is actively sculpted by the adaptive immune system through a feed-forward loop.
Project description:The lack of T cell infiltrates is a major obstacle to effective immunotherapy in cancer. Conversely, the formation of tumor-associated tertiary-lymphoid-like structures (TA-TLLSs), which are the local site of humoral and cellular immune responses against cancers, is associated with good prognosis, and they have recently been detected in immune checkpoint blockade (ICB)-responding patients. However, how these lymphoid aggregates develop remains poorly understood. By employing single-cell transcriptomics, endothelial fate mapping, and functional multiplex immune profiling, we demonstrate that antiangiogenic immune-modulating therapies evoke transdifferentiation of postcapillary venules into inflamed high-endothelial venules (HEVs) via lymphotoxin/lymphotoxin beta receptor (LT/LTβR) signaling. In turn, tumor HEVs boost intratumoral lymphocyte influx and foster permissive lymphocyte niches for PD1- and PD1+TCF1+ CD8 T cell progenitors that differentiate into GrzB+PD1+ CD8 T effector cells. Tumor-HEVs require continuous CD8 and NK cell-derived signals revealing that tumor HEV maintenance is actively sculpted by the adaptive immune system through a feed-forward loop.
Project description:Spatial multi-omics of intratumoral humoral immunity niches associated with tertiary lymphoid structures in pancreatic cancer pathologic responders to immunotherapy.
Project description:Spatial multi-omics of intratumoral humoral immunity niches associated with tertiary lymphoid structures in pancreatic cancer pathologic responders to immunotherapy.
Project description:The key role of tertiary lymphoid structures in autoimmune and non-autoimmune conditions has been recently appreciated. While many of the molecular mechanisms involved in tertiary lymphoid structure formation have been identified, their cellular sources and temporal and spatial relationship remain unknown. Using single-cell RNA-sequencing, spatial transcriptomics and proteomics of minor salivary glands of patients with Sjogren’s disease and Sicca Syndrome, ex-vivo and in vivo functional studies, we construct a cellular and spatial map of key components involved in the formation and function of tertiary lymphoid structures. We confirm the presence of a fibroblast cell state and identify an undescribed pericyte/mural cell state with potential immunological functions. The identification of novel cellular properties associated with these structures and the molecular and functional interactions identified by this analysis provide key therapeutic cues for tertiary lymphoid structures associated conditions in autoimmunity and cancer.
Project description:The key role of tertiary lymphoid structures in autoimmune and non-autoimmune conditions has been recently appreciated. While many of the molecular mechanisms involved in tertiary lymphoid structure formation have been identified, their cellular sources and temporal and spatial relationship remain unknown. Using single-cell RNA-sequencing, spatial transcriptomics and proteomics of minor salivary glands of patients with Sjogren’s disease and Sicca Syndrome, ex-vivo and in vivo functional studies, we construct a cellular and spatial map of key components involved in the formation and function of tertiary lymphoid structures. We confirm the presence of a fibroblast cell state and identify an undescribed pericyte/mural cell state with potential immunological functions. The identification of novel cellular properties associated with these structures and the molecular and functional interactions identified by this analysis provide key therapeutic cues for tertiary lymphoid structures associated conditions in autoimmunity and cancer.
Project description:The formation of tertiary lymphoid structures (TLSs) in human cancer patients is significantly correlated with prolonged survival, better prognosis, and improved responses to immune checkpoint therapy. We generated mouse models to investigate TLS formation using the KxPxCx pancreatic cancer model