Project description:Insulin expression is restricted to the pancreatic beta cells, which are physically or functionally depleted in diabetes. Identifying targetable pathways repressing insulin in non-beta cells, particularly in the developmentally related glucagon-secreting alpha cells, is an important aim of regenerative medicine. Here, we performed an RNA interference screen in the murine alpha cell line, alphaTC1, to identify silencers of insulin expression. We discovered that knockdown of the splicing factor Smndc1 (Survival Motor Neuron Domain Containing 1) triggered a global repression of alpha cell gene-expression programs in favor of increased beta cell markers. Mechanistically, Smndc1 knockdown upregulated the key beta cell transcription factor Pdx1, by modulating the activities of the BAF and Atrx families of chromatin remodeling complexes. SMNDC1’s repressive role was conserved in human pancreatic islets, its loss triggering enhanced insulin secretion and PDX1 expression. Our study identifies Smndc1 as a key factor connecting splicing and chromatin remodeling to the control of insulin expression in human and mouse islet cells.
Project description:Insulin expression is restricted to the pancreatic beta cells, which are physically or functionally depleted in diabetes. Identifying targetable pathways repressing insulin in non-beta cells, particularly in the developmentally related glucagon-secreting alpha cells, is an important aim of regenerative medicine. Here, we performed an RNA interference screen in the murine alpha cell line, alphaTC1, to identify silencers of insulin expression. We discovered that knockdown of the splicing factor Smndc1 (Survival Motor Neuron Domain Containing 1) triggered a global repression of alpha cell gene-expression programs in favor of increased beta cell markers. Mechanistically, Smndc1 knockdown upregulated the key beta cell transcription factor Pdx1, by modulating the activities of the BAF and Atrx families of chromatin remodeling complexes. SMNDC1’s repressive role was conserved in human pancreatic islets, its loss triggering enhanced insulin secretion and PDX1 expression. Our study identifies Smndc1 as a key factor connecting splicing and chromatin remodeling to the control of insulin expression in human and mouse islet cells.
Project description:Insulin expression is restricted to the pancreatic beta cells, which are physically or functionally depleted in diabetes. Identifying targetable pathways repressing insulin in non-beta cells, particularly in the developmentally related glucagon-secreting alpha cells, is an important aim of regenerative medicine. Here, we performed an RNA interference screen in the murine alpha cell line, alphaTC1, to identify silencers of insulin expression. We discovered that knockdown of the splicing factor Smndc1 (Survival Motor Neuron Domain Containing 1) triggered a global repression of alpha cell gene-expression programs in favor of increased beta cell markers. Mechanistically, Smndc1 knockdown upregulated the key beta cell transcription factor Pdx1, by modulating the activities of the BAF and Atrx families of chromatin remodeling complexes. SMNDC1’s repressive role was conserved in human pancreatic islets, its loss triggering enhanced insulin secretion and PDX1 expression. Our study identifies Smndc1 as a key factor connecting splicing and chromatin remodeling to the control of insulin expression in human and mouse islet cells.
Project description:Dedifferentiation of pancreatic beta cells may reduce islet function in type 2 diabetes (T2D). However, the prevalence, plasticity and functional consequences of this cellular state remain unknown. We employed single-cell RNAseq to detail the maturation program of alpha and beta cells during human ontogeny. We show that although both alpha and beta cells mature in part by repressing non-endocrine genes, alpha-cells retain hallmarks of an immature state, while beta-cells attain a full beta-cell specific gene expression program. In islets from T2D donors, both alpha- and beta-cells return to a less mature expression profile, de-repressing the juvenile genetic program and exocrine genes while increasing expression of exocytosis, inflammation and stress response signaling pathways. These changes support the increased proportion of beta-cells displaying suboptimal function observed in T2D islets. These findings provide new insights into the molecular program underlying islet cell maturation during human ontogeny and the loss of transcriptomic maturity that occurs in islets of type 2 diabetics.
Project description:Insulin-secreting β cells and glucagon-secreting α cells maintain physiological blood glucose levels, and their malfunction drives diabetes development. Using ChIP sequencing and RNA sequencing analysis, we determined the epigenetic and transcriptional landscape of human pancreatic α, β, and exocrine cells. We found that, compared with exocrine and β cells, differentiated α cells exhibited many more genes bivalently marked by the activating H3K4me3 and repressing H3K27me3 histone modifications. This was particularly true for β cell signature genes involved in transcriptional regulation. Remarkably, thousands of these genes were in a monovalent state in β cells, carrying only the activating or repressing mark. Our epigenomic findings suggested that α to β cell reprogramming could be promoted by manipulating the histone methylation signature of human pancreatic islets. Indeed, we show that treatment of cultured pancreatic islets with a histone methyltransferase inhibitor leads to colocalization of both glucagon and insulin and glucagon and insulin promoter factor 1 (PDX1) in human islets and colocalization of both glucagon and insulin in mouse islets. Thus, mammalian pancreatic islet cells display cell-type–specific epigenomic plasticity, suggesting that epigenomic manipulation could provide a path to cell reprogramming and novel cell replacement-based therapies for diabetes. Pancreatic islets were collected post-mortem from 6 human donors and subjected to FACS to separate populations of alpha, beta, and exocrine cells. Depending on the availability of resulting material, sorted islet cell populations were used for H3K4me3, H3K27me3 ChIP-seq, or RNA-seq analysis. All ChIP-seq samples have a corresponding input from the same sample.
Project description:Insulin-secreting β cells and glucagon-secreting α cells maintain physiological blood glucose levels, and their malfunction drives diabetes development. Using ChIP sequencing and RNA sequencing analysis, we determined the epigenetic and transcriptional landscape of human pancreatic α, β, and exocrine cells. We found that, compared with exocrine and β cells, differentiated α cells exhibited many more genes bivalently marked by the activating H3K4me3 and repressing H3K27me3 histone modifications. This was particularly true for β cell signature genes involved in transcriptional regulation. Remarkably, thousands of these genes were in a monovalent state in β cells, carrying only the activating or repressing mark. Our epigenomic findings suggested that α to β cell reprogramming could be promoted by manipulating the histone methylation signature of human pancreatic islets. Indeed, we show that treatment of cultured pancreatic islets with a histone methyltransferase inhibitor leads to colocalization of both glucagon and insulin and glucagon and insulin promoter factor 1 (PDX1) in human islets and colocalization of both glucagon and insulin in mouse islets. Thus, mammalian pancreatic islet cells display cell-type–specific epigenomic plasticity, suggesting that epigenomic manipulation could provide a path to cell reprogramming and novel cell replacement-based therapies for diabetes.
Project description:Objective: Homozygous loss-of-function mutations in the gene coding for the homeobox transcription factor (TF) PDX1 leads to pancreatic agenesis, whereas heterozygous mutations can cause Maturity-Onset Diabetes of the Young 4 (MODY4). Although the function of Pdx1 is well studied in pre-clinical models during insulin-producing β-cell development and homeostasis, it remains elusive how this TF controls human pancreas development by regulating a downstream transcriptional program. Furthermore, many studies reported the association between single nucleotide polymorphisms (SNPs) and T2DM and it has been shown that islet enhancers are enriched in T2DM-associated SNPs. Whether regions, harboring T2DM-associated SNPs are PDX1 bound and active at the pancreatic progenitor stage has not been reported so far. Methods: In this study, we have generated a novel induced pluripotent stem cell (iPSC) line that efficiently differentiates into human pancreatic progenitors (PPs). Furthermore, PDX1 and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) was used to identify PDX1 transcriptional targets and active enhancer and promoter regions. To address potential differences in the function of PDX1 during development and adulthood, we compared PDX1 binding profiles from PPs and adult islets. Moreover, combining ChIP-seq and GWAS meta-analysis data we identified T2DM-associated SNPs in PDX1 binding sites and active chromatin regions. Results: ChIP-seq for PDX1 revealed a total of 8088 PDX1-bound regions that map to 5664 genes in iPSC-derived PPs. The PDX1 target regions included important pancreatic TFs, such as PDX1 itself, RFX6, HNF1B and MEIS1, which were activated during the differentiation process as revealed by the active mono-acetylated chromatin mark H3K27ac and mRNA expression profiling, suggesting that auto-regulatory feedback regulation maintains PDX1 expression and initiates a pancreatic TF program. Remarkably, we identified several PDX1 target genes that have not been reported in human so far, including RFX3, required for ciliogenesis and endocrine differentiation in mouse, and the ligand for the Notch receptor, DLL1, which is important for endocrine induction and tip-trunk patterning. The comparison of PDX1 profiles from PPs and adult human islets identified sets of stage-specific target genes, associated with early pancreas development and adult β-cell function. Furthermore, we found an enrichment of T2DM-associated SNPs in active chromatin regions from iPSC-derived PPs. Two of these SNPs fall into PDX1 occupied sites that are located in the intronic regions of TCF7L2 and HNF1B. Both of these genes are key transcriptional regulators of endocrine induction and mutations in cis-regulatory regions predispose to diabetes. Conclusions: Our data provides stage-specific target genes of PDX1 during in vitro differentiation of stem cells into pancreatic progenitors that could be useful to identify pathways and molecular targets that predispose for diabetes. In addition, we show that T2DM-associated SNPs are enriched in active chromatin regions at the pancreatic progenitor stage, suggesting that the susceptibility to T2DM might originate from imperfect execution of a β-cell developmental program.
Project description:Transcription factors (TF) are indispensable for maintaining cell identity through regulating cell specific gene expression. Distinct cell identities derived from a common progenitor are frequently perpetuated by shared TFs; yet the mechanisms that facilitate their cell specific regulatory targets are poorly characterized. We report that the TF NKX2.2 is critical for the identity of pancreatic islet α cells by directly activating α cell genes and repressing alternate islet cell fate genes. When compared to the known role of NKX2.2 in islet β cells, we demonstrate that NKX2.2 regulates novel α cell target genes, facilitated in part by α cell specific DNA binding at gene promoters. Furthermore, we have identified the reprogramming factor KLF4 as having enriched expression in α cells, where it co-occupies NKX2.2-bound α cell promoters and is necessary for NKX2.2 binding in α cells to co-regulate many NKX2.2 α cell transcriptional targets. Misexpression of Klf4 in β cells is sufficient to manipulate chromatin accessibility, increase binding of NKX2.2 at α cell specific promoters sites, and alter expression of NKX2.2-regulated cell specific targets. This study identifies KLF4 is a novel α cell identity factor that cooperates with NKX2.2 to regulate α cell identity.
Project description:Transcription factors (TF) are indispensable for maintaining cell identity through regulating cell specific gene expression. Distinct cell identities derived from a common progenitor are frequently perpetuated by shared TFs; yet the mechanisms that facilitate their cell specific regulatory targets are poorly characterized. We report that the TF NKX2.2 is critical for the identity of pancreatic islet α cells by directly activating α cell genes and repressing alternate islet cell fate genes. When compared to the known role of NKX2.2 in islet β cells, we demonstrate that NKX2.2 regulates novel α cell target genes, facilitated in part by α cell specific DNA binding at gene promoters. Furthermore, we have identified the reprogramming factor KLF4 as having enriched expression in α cells, where it co-occupies NKX2.2-bound α cell promoters and is necessary for NKX2.2 binding in α cells to co-regulate many NKX2.2 α cell transcriptional targets. Misexpression of Klf4 in β cells is sufficient to manipulate chromatin accessibility, increase binding of NKX2.2 at α cell specific promoters sites, and alter expression of NKX2.2-regulated cell specific targets. This study identifies KLF4 is a novel α cell identity factor that cooperates with NKX2.2 to regulate α cell identity.
Project description:Transcription factors (TF) are indispensable for maintaining cell identity through regulating cell specific gene expression. Distinct cell identities derived from a common progenitor are frequently perpetuated by shared TFs; yet the mechanisms that facilitate their cell specific regulatory targets are poorly characterized. We report that the TF NKX2.2 is critical for the identity of pancreatic islet α cells by directly activating α cell genes and repressing alternate islet cell fate genes. When compared to the known role of NKX2.2 in islet β cells, we demonstrate that NKX2.2 regulates novel α cell target genes, facilitated in part by α cell specific DNA binding at gene promoters. Furthermore, we have identified the reprogramming factor KLF4 as having enriched expression in α cells, where it co-occupies NKX2.2-bound α cell promoters and is necessary for NKX2.2 binding in α cells to co-regulate many NKX2.2 α cell transcriptional targets. Misexpression of Klf4 in β cells is sufficient to manipulate chromatin accessibility, increase binding of NKX2.2 at α cell specific promoters sites, and alter expression of NKX2.2-regulated cell specific targets. This study identifies KLF4 is a novel α cell identity factor that cooperates with NKX2.2 to regulate α cell identity.