Project description:To comprehend the gene expression profile in rice panicle under high temperature, Agilent 4×44k rice oligo microarray experiments were carried out using rice panicle of post-meiosis at 0 min, 10min, 20 min, 60 min, and 2 hr after the treatment of 40 degree centigrade, and the differentially expressed genes at the time course were involved in binding, catalysis, stress response, and cellular process. The significantly expressed genes were mainly up-regulated. Among HR genes, the predominant transcription factor gene families were Hsf, NAC, AP2/ERF, WRKY, MYB, and C2H2. The MapMan analysis demonstrated that, under heat treatment, the HR genes were enriched in the pathways related to biotic stress, abiotic stress including heat and cold, and cell cycle and development, ubiquitin-proteasome , lipid and secondary metabolisms, which revealed the great importance of cross-talk and protein homeostasis in response to heat in rice panicle of post-meiosis.
Project description:Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates. Keywords: Comparison of gene expression in three tissues with stress treatment and without treatment To globally elucidate potential genes involved in drought and high-salinity stresses responses in rice, an oligomer microarray covering 37,132 genes including cDNA or EST supported and putative genes was applied to study the expression profiling of shoot, flag leaf, and panicle under drought or high-salinity treatment. Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates.
Project description:Lysine acetylation is a dynamic and reversible post-translational modification that plays an imporant role in the gene transcription regulation. Here, we report high quality proteome-scale data for lysine-acetylation sites and proteins in rice (Oryza sativa). A total of 1337 Kac sites in 716 Kac proteins with diverse biological functions and subcellular localizations were identified in rice seedlings.
Project description:A biological phenomenon in which hybrids exhibit superior phenotypes from its parental inbred lines known as heterosis, has been widely exploited in plant breeding and extensively used in crop improvement. Hybrid rice has immense potential to increase yield over other rice varieties and hence is crucial in meeting increasing demand of rice globally. Moreover, the molecular basis of heterosis is still not fully understood and hence it becomes imperative to unravel its genetic and molecular basis. In this context, RNA sequencing technology (RNA-Seq) was employed to sequence transcriptomes of two rice hybrids, Ajay and Rajalaxmi, their parental lines, CRMS31A (sterile line, based on WA-CMS) and CRMS32A (sterile line based on Kalinga-CMS) respectively along with the common restorer line of both hybrids, IR-42266-29-3R at two critical rice developmental stages viz., panicle initiation (PI) and grain filling (GF). Identification of differentially expressed genes (DEGs) at PI and GF stages will further pave the way for understanding heterosis. In addition, such kind of study would help in better understanding of heterosis mechanism and genes up-regulated and down-regulated during the critical stages of rice development for higher yield.
Project description:Compared with the wild type, in the lf2 mutant, 835 upregulated genes and 832 downregulated genes were detected, including a large number of genes that regulate the development of rice floral/panicle organs and are involved in the auxin regulation pathway.
Project description:This experiment was designed to identify transcribed regions of japonica subspecies of the rice genome. A series of high-density oligonucleotide tiling arrays that represent sense and antisense strands of the entire nonrepetitive sequence of all the 12 chromosomes were designed to measure genome-wide transcription. A total of 12253842 36mer oligonucleotide probes positioned every 46 nt on average were used for this purpose. The probes were synthesized via maskless photolithography at a feature density of approximately 389,000 probes per slide. The arrays were hybridized with fluorescence-labeled cDNA reverse-transcribed from equal amounts of four selected poly(A)+ RNA population (seedling root, seedling shoot, panicle, and suspension cultured cells). Keywords: tiling array, genome-wide transcription