Project description:GM1 gangliosidosis is a neurodegenerative disorder caused by mutations in theGLB1gene, which encodes lysosomalb-galactosidase. The enzyme deficiency blocks GM1 ganglioside catabolism, leading to accumulation of GM1 ganglioside and asialo-GM1 ganglioside (GA1 glycolipid) in brain. This disease can present in varying degrees of severity, with the level of residualb-galactosidase activity primarily determining the clinical course.Glb1null mouse models, which completely lackb-galactosidase expression, exhibit a less severe form of the disease than expected from the comparable deficiency in humans, suggesting a potential species difference in the GM1 ganglioside degradation pathway. We hypothesized this difference may involve the sialidase NEU3, which acts on GM1 ganglioside to produce GA1 glycolipid. To test this hypothesis, we generatedGlb1/Neu3double knockout (DKO) mice. These mice had a significantly shorter lifespan, increased neurodegeneration, and more severe ataxia thanGlb1KO mice.Glb1/Neu3DKO mouse brains exhibited an increased GM1 ganglioside to GA1 glycolipid ratio compared withGlb1KO mice, indicating that Neu3 mediated GM1 ganglioside to GA1 glycolipid conversion inGlb1KO mice. The expression of genes associated with neuroinflammation and glial responses were enhanced inGlb1/Neu3DKO mice compared withGlb1KO mice. Mouse Neu3 more efficiently converted GM1 ganglioside to GA1 glycolipid than human NEU3 did. Our findings highlight Neu3’s role in ameliorating the consequences ofGlb1deletion in mice, provide insights into NEU3’s differential effects between mice and humans in GM1 gangliosidosis, and offer a potential therapeutic approach for reducing toxic GM1 ganglioside accumulation in GM1 gangliosidosis patients.
Project description:The aggregation of amyloid beta (Aβ) peptide is associated with Alzheimer’s disease (AD) pathogenesis. Cell membrane composition, especially monosialotetrahexosylganglioside (GM1), is known to promote the formation of Aβ fibrils, yet little is known about the roles of GM1 in the early steps of Aβ oligomer formation. Here, by using GM1-contained liposomes as a mimic of neuronal cell membrane, we demonstrate that GM1 is a critical trigger of Aβ oligomerization and aggregation. We find that GM1 not only promotes the formation of Aβ fibrils, but also facilitates the maintenance of Aβ oligomers on liposome membranes. We structurally characterize the Aβ oligomers formed on the membrane and find that GM1 captures Aβ by binding to its arginine-5 residue. To interrogate the mechanism of Aβ oligomer toxicity, we design a new liposome-based Ca2+-encapsulation assay and provide new evidence for the Aβ ion channel hypothesis. Finally, we conduct cell viability assay to determine the toxicity of Aβ oligomers formed on membranes. Overall, by uncovering the roles of GM1 in mediating early Aβ oligomer formation and maintenance, our work provides a novel direction for pharmaceutical research for AD.