Project description:Genomic variation is an inherent phenomena observed among members of same species belonging to different geographical locations. In case of P. falciparum, an apicomplexan protozoan parasite, its 22.8 MB nuclear genome is known to display vast genetic diversity in the subtelomeric compartments having but not exclusively variant gene families like var, rifins and stevors and examples in other elements of the genome have recently been documented. Microarrays, relies solely on the genomic sequence information to capture the relevant transcript abundance and needs to consider these variations into account for revealing true transcriptional variation.Here, we describe the designing strategy of a custom P. falciparum 15K array using Agilent platform to study the transcriptome of Indian field isolates for which genome sequence information is limited. Array contains probes representing genome sequence of two distinct geographical isolates (i.e 3D7 and HB3) and subtelomeric var gene sequence of a third isolate (IT4) known to adhere in culture condition. Probes in the array have been selected based on their efficiency to detect transcripts by performing a 244K array experiment representing multiple probes per gene/transcript. Array performance was evaluated and validated using RNA materials from P. falciparum clinical isolates obtained directly from patients with differing clinical conditions due to malaria infection.Due to pre probe screening large percentage (91 %) of the represented transcripts could be detected from Indian P. falciparum isolates. Replicated probes and multiple probes representing the same gene showed perfect correlation between them suggesting good probe performance. Additional transcripts could be detected due to inclusion of unique probes representing HB3 strain transcripts. Variant surface antigen (VSA) transcripts were detected by optimized probes representing the VSA genes of three geographically distinct strains. Plasmodium falciparum isolates were collected from patients (n=13) with differing clinical conditions. The patients exhibited symptoms categorized as uncomplicated (n=6) or complicated malaria (n=7). Criteria for determination of complicated disease were based on World Health Organization year 2000 guidelines. Microarray array based transcriptional profiling was carried out to evaluate the performance of the array.
Project description:Genomic variation is an inherent phenomena observed among members of same species belonging to different geographical locations. In case of P. falciparum, an apicomplexan protozoan parasite, its 22.8 MB nuclear genome is known to display vast genetic diversity in the subtelomeric compartments having but not exclusively variant gene families like var, rifins and stevors and examples in other elements of the genome have recently been documented. Microarrays, relies solely on the genomic sequence information to capture the relevant transcript abundance and needs to consider these variations into account for revealing true transcriptional variation.Here, we describe the designing strategy of a custom P. falciparum 15K array using Agilent platform to study the transcriptome of Indian field isolates for which genome sequence information is limited. Array contains probes representing genome sequence of two distinct geographical isolates (i.e 3D7 and HB3) and subtelomeric var gene sequence of a third isolate (IT4) known to adhere in culture condition. Probes in the array have been selected based on their efficiency to detect transcripts by performing a 244K array experiment representing multiple probes per gene/transcript. Array performance was evaluated and validated using RNA materials from P. falciparum clinical isolates obtained directly from patients with differing clinical conditions due to malaria infection.Due to pre probe screening large percentage (91 %) of the represented transcripts could be detected from Indian P. falciparum isolates. Replicated probes and multiple probes representing the same gene showed perfect correlation between them suggesting good probe performance. Additional transcripts could be detected due to inclusion of unique probes representing HB3 strain transcripts. Variant surface antigen (VSA) transcripts were detected by optimized probes representing the VSA genes of three geographically distinct strains.
Project description:Optimize SNP genotyping probes and demonstrate a new P. falciparum microarray platform that includes CGH and resequencing probes on the same chip
Project description:ChIP-seq experiments were performed for the putative telomere repeat-binding factor (PfTRF) in the malaria parasite Plasmodium falciparum strain 3D7. The gene encoding this factor (PF3D7_1209300) was endogenously tagged with either a GFP- or a 3xHA-tag and these transgenic parasite lines were used in ChIP-sequencing experiments. Sequencing of the ChIP and input libraries showed enrichment of PfTRF at all telomere-repeat containing chromosome ends (reference genome Plasmodium falciparum 3D7 from PlasmoDB version 6.1) as well as in all upsB var promoters.In addition,PfTRF was enriched at seven additional, intra-chromosomal sites and called in the PfTRF-HA ChIP-seq only. Plasmodium falciparum 3D7 parasites were generated with -GFP or -3xHA C-terminal tagged TRF (PF3D7_1209300). Nuclei were isolated from formaldehyde cross-linked schizont-stage transgenic parasites and used to prepare chromatin. Chromatin immunoprecipitations were performed using mouse anti-GFP (Roche Diagnostics, #11814460001) or rat anti-HA 3F10 (Roche Diagnostics, #12158167001). Sequencing libraries were prepared according to a Plasmodium-optimized library preparation procedure including KAPA polymerase-mediated PCR amplification.
Project description:Optimize SNP genotyping probes and demonstrate a new P. falciparum microarray platform that includes CGH and resequencing probes on the same chip 3D7 common reference; lab samples: HB3, Dd2, SC05, 7C126; field patient samples: M1176, M1069, M1094, M1321, M1064, M1111
Project description:A custom resequencing array for analysis of field isolates of plasmdium falciparum was created. Test of DNA with genotypes known at all loci genotyped by the microarray as well as test of accuracy correlation with amounts of DNA added to each array Comparison of test DNA from lab and clinical isolates between genotyped generated by next-generation sequencing and this new custom DNA microarray.
Project description:Background: The cytoadherence of Plasmodium falciparum is thought to be mediated by variant surface antigens (VSA), encoded by var, rif, stevor and pfmc-2tm genes. The last three families have rarely been studied in the context of cytoadherence. As most VSA genes are unique, the variability among sequences has impeded the functional study of VSA across different P. falciparum strains. However, many P. falciparum genomes have recently been sequenced, allowing the development of specific microarray probes to each VSA gene. Methods: All VSA sequences from the HB3, Dd2 and IT/FCR3 genomes were extracted using HMMer. Oligonucleotide probes were designed with OligoRankPick and added to the 3D7-based microarray chip. As a proof of concept, IT/R29 parasites were selected for and against rosette formation and the transcriptomes of isogenic rosetting and non-rosetting parasites were compared by microarray. Results: From each parasite strain 50-56 var genes, 125-132 rif genes, 26-33 stevor genes and 3-8 pfmc-2tm genes were identified. The ability of the VSA-supplemented microarray chip to detect cytoadherence-related genes was assessed using P. falciparum clone IT/R29, in which rosetting is known to be mediated by PfEMP1 encoded by ITvar9. Whole transcriptome analysis showed that the most highly upregulated gene in rosetting parasites was ITvar9 (19 to 429-fold upregulated over six time points). Only one rif gene (IT4rifA_042) was upregulated by more than 4-fold (5-fold at 12 hours post-invasion), and no stevor or pfmc-2tm genes were upregulated by more than 2-fold. 49 non-VSA genes were upregulated in rosetting parasites by more than 3-fold in at least two time-points, although none as markedly as ITvar9. Conclusions: We demonstrate that the VSA of newly sequenced P. falciparum strains can be added to the 3D7-based microarray chip, allowing the analysis of the entire transcriptome of multiple strains. For the rosetting clone IT/R29, the striking transcriptional upregulation of ITvar9 was confirmed, and the data did not support the involvement of other VSA families in rosette formation.