Project description:Analysis of Huh-7 hepatocarcinoma cell line depleted of NDRG3 or HIF-1α under hypoxic condition. HIF-1α and NDRG3 have distinct functions in hypoxia responses. Results provide insight into molecular basis of HIF-independent signaling in the development and progression of hypoxic tumors Gene expression profiles of Huh-7 cells stably expressing NDRG3-shRNA or HIF-1α-shRNA under normoxia were compared to gene expression profiles of Huh-7 stable cells under hypoxia for 6, 12 and 24 hours.
Project description:Analysis of Huh-7 hepatocarcinoma cell line depleted of NDRG3 or HIF-1α under hypoxic condition. HIF-1α and NDRG3 have distinct functions in hypoxia responses. Results provide insight into molecular basis of HIF-independent signaling in the development and progression of hypoxic tumors Gene expression profiles of Huh-7 cells stably expressing NDRG3-shRNA or HIF-1α-shRNA under normoxia were compared to gene expression profiles of Huh-7 stable cells under hypoxia for 3, 6, 12 and 24 hours.
Project description:Analysis of Huh-7 hepatocarcinoma cell line depleted of NDRG3 or HIF-1α under hypoxic condition. HIF-1α and NDRG3 have distinct functions in hypoxia responses. Results provide insight into molecular basis of HIF-independent signaling in the development and progression of hypoxic tumors
Project description:Analysis of Huh-7 hepatocarcinoma cell line depleted of NDRG3 or HIF-1α under hypoxic condition. HIF-1α and NDRG3 have distinct functions in hypoxia responses. Results provide insight into molecular basis of HIF-independent signaling in the development and progression of hypoxic tumors
Project description:Hypoxia-inducible factor 1 (HIF-1) is a transcriptional regulator that mediates cellular adaptive responses to hypoxia. Hypoxia-inducible factor 1α (HIF-1α) is involved in the development of ascites syndrome (AS) in broiler chickens. Therefore, studying the effect of HIF-1α on the cellular transcriptome under hypoxic conditions will help to better understand the mechanism of HIF-1α in the development of AS in broilers. In this study, we analyzed the gene expression profile of the DF-1 cell line under hypoxic conditions by RNA-seq. Additionally, we constructed the HIF-1α knockdown DF-1 cell line by using the RNAi method and analyzed the gene expression profile under hypoxic conditions. The results showed that exposure to hypoxia for 48 hours had a significant impact on the expression of genes in the DF-1 cell line, which related to cell proliferation, stress response, and apoptosis. In addition, after HIF-1α knockdown more differential expression genes appeared than in wild-type cells, and the expression of most hypoxia-related genes was either down-regulated or remained unchanged. Pathway analysis results showed that differentially expressed genes were mainly enriched in pathways related to cell proliferation, apoptosis, and oxidative phosphorylation. Our study obtained transcriptomic data from chicken fibroblasts at different hypoxic times and identified the potential regulatory network associated with HIF-1α. This data provides valuable support for understanding the transcriptional regulatory mechanism of HIF-1α in the development of AS in broilers.
Project description:Hypoxia can result in tissue dysfunction, metabolic alterations, and structural damage within the pulmonary tissue, thereby impacting lung ventilation and air exchange. The identification of Hypoxia-inducible factor (Hif) 1α as a pivotal mediator in the inflammatory cascade subsequent to hypoxia induction has been established. However, the mechanism remains elusive. To delve deeper into this phenomenon, we have developed a murine model of sustained hypoxia and utilized nanocarriers for the delivery of lentivirus Hif-1α for knockdown purposes. Our findings suggest that under conditions of sustained hypoxia, knockdown of Hif-1α effectively ameliorated SpO2 levels and attenuated lung injury in our murine model. We observed that Hif-1α-mediated Histone Lactylation was evident in the lungs exposed to sustained hypoxia. Through RNA-seq and ChIP-seq profiling, we determined that upregulation of Hif-1α expression in sustained hypoxic lung tissue is essential for inducing lactylation enrichment of inflammatory response genes. Furthermore, knockdown of Hif-1α returned to normal inflammatory cytokines (e.g. TNF-α, IL-6 and IL-1β). Analysis of plasma metabolites from individuals experiencing restrictive/ obstructive lung disease revealed a significant enrichment of the Warburg effect within the sustained hypoxic group. Thus, our study provides compelling evidence supporting the notion that targeting Hif-1α-mediated histone lactylation may represent a promising therapeutic strategy for managing sustained hypoxia-induced lung injury.
Project description:Hypoxia can result in tissue dysfunction, metabolic alterations, and structural damage within the pulmonary tissue, thereby impacting lung ventilation and air exchange. The identification of Hypoxia-inducible factor (Hif) 1α as a pivotal mediator in the inflammatory cascade subsequent to hypoxia induction has been established. However, the mechanism remains elusive. To delve deeper into this phenomenon, we have developed a murine model of sustained hypoxia and utilized nanocarriers for the delivery of lentivirus Hif-1α for knockdown purposes. Our findings suggest that under conditions of sustained hypoxia, knockdown of Hif-1α effectively ameliorated SpO2 levels and attenuated lung injury in our murine model. We observed that Hif-1α-mediated Histone Lactylation was evident in the lungs exposed to sustained hypoxia. Through RNA-seq and ChIP-seq profiling, we determined that upregulation of Hif-1α expression in sustained hypoxic lung tissue is essential for inducing lactylation enrichment of inflammatory response genes. Furthermore, knockdown of Hif-1α returned to normal inflammatory cytokines (e.g. TNF-α, IL-6 and IL-1β). Analysis of plasma metabolites from individuals experiencing restrictive/ obstructive lung disease revealed a significant enrichment of the Warburg effect within the sustained hypoxic group. Thus, our study provides compelling evidence supporting the notion that targeting Hif-1α-mediated histone lactylation may represent a promising therapeutic strategy for managing sustained hypoxia-induced lung injury.
Project description:Increased levels of hypoxia and hypoxia inducible factor 1α (HIF-1α) in human sarcomas correlate with tumor progression and radiation resistance. Prolonged anti-angiogenic therapy of tumors can delay tumor growth but may also increase hypoxia and HIF-1α activity. In our recent clinical trial, treatment with the anti-vascular endothelial growth factor A (VEGF-A) antibody, bevacizumab, followed by a combination of bevacizumab and radiation led to near complete necrosis in nearly half of sarcomas. Gene set enrichment analysis of microarrays from pre-treatment biopsies found the Gene Ontology category “Response to hypoxia” was upregulated in poor responders, and hierarchical clustering based on 140 hypoxia-responsive genes separated poor responders from good responders. The most commonly used chemotherapeutic drug for sarcomas, doxorubicin (Dox), was recently found to block HIF-1α binding to DNA at low metronomic doses. We thus examined Dox treatment in 4 sarcoma cell lines, and found Dox at low concentrations (1-10 uM) blocked HIF-1α induction of VEGF-A by 84-97%, while inhibition of other HIF-1α-target genes including CA9, c-Met and FOXM1 was variable. HT1080 sarcoma xenografts had increased hypoxia and/or HIF-1α activity with increasing tumor size and with anti-VEGF receptor antibody (DC101) treatment. Combining DC101 and metronomic Dox had a synergistic effect in suppressing growth of HT1080 xenografts, primarily via induction of tumor endothelial cell apoptosis. In conclusion, sarcomas respond to increased hypoxia by expressing HIF-1α-target genes which may promote resistance to anti-angiogenic and other therapies. Metronomic Dox can block HIF-1α activation of target genes and works synergistically with anti-VEGF therapy to inhibit sarcomas. Pre-treatment biopsies were collected from 16 human sarcoma. The gene expression analysis was performed using Illumina platform.