Project description:A safer design and higher eficacy of nano-gold therapeutic formulations requires examination of cellular responses to gold nanoparticles (AuNPs). In this work we compared cellular uptake, cytotoxicity and RNA expression patterns induced in Caco-2 cells of citrate-stabilized Au NP of two different sizes (5 and 30 nm). The toxicity was measured with Colony Forming Efficiency (CFE) and Trypan Blue assays at 24 and 72 h after exposure to AuNPs in the 10 - 300 mM range. Toxicity was observed only in the CFE assay, at 200 and 300 mM exposure levels, and exclusively for smaller AuNPs size. Cellular internalization was dose and time-dependent for both AuNPs. The most pronounced changes in gene expression, evaluated with Agilent microarrays, were detected at 72 h (300 mM) for 5 nm AuNPs, with 103 up and 708 down regulated transcripts. For 30 nm AuNPs, only 4 gene transcripts were repressed under these conditions. The biological processes affected by 5 nm AuNPs were: RNA/zinc ion/transition metal ion binding (decreased), cadmium/copper ion binding and glutathione metabolism (increased). Some Nrf2 responsive genes (several metallothioneins, HMOX, G6PD, OSGIN1 and GPX2) were highly up regulated. Members of the selenoproteins (SELT, SELK, 15 kDa selenoprotein, SEPP1 and GPX2) were also differentially expressed. Our findings indicate that at high concentrations, smaller AuNPs can induce metal exposure and oxidative stress signaling pathways, and might influence selenium homeostasis. Therefore, some observed effects associated with nano-gold cytotoxicity can be further explored as potential enhancers of anti-cancer properties of already existing AuNPs based nanomedicin. Caco-2 cells were expoxed to spherical gold nanoparticles of two different sizes and concentrations (5 and 30 nm AuNPs, 100 and 300 microM). Cells were collected after 24 or 72 hours
Project description:To identify key biological pathways that define toxicity or biocompatibility after nanoparticle exposure, three human cell types were exposed in vitro to two high aspect ratio nanoparticles for 1 hr or 24 hr and collected for global transcriptomics. Transcriptional responses were measured by global microarray analysis of cells in culture. Groups (N=3 biological replicates) of Caco-2/HT29-MTX cells exposed to 0, 10 or 100 ug/ml MWCNT or TiO2-NB nanoparticles for 1 or 24 hr.
Project description:To further study the transcriptome of Caco-2 human colon epithelial-like cells after exposure to S-nitrosoglutathione (GSNO, 1.4 μM), or Eudragit RL PO polymeric nanoparticles (NP-ERL, 50 μg/mL) or GSNO loaded nanoparticles (NP-GSNO, 50 μg/mL corresponding to (1.4 μM GSNO) we investigate whole genome microarray to identify genes regulates by exposure or not to GSNO (1.4 μM) or Eudragit RL PO polymeric nanoparticles (NP-ERL, 50 μg/mL) or GSNO loaded nanoparticles (NP-GSNO, 50 μg/mL corresponding to (1.4 μM GSNO).
Project description:To further study the transcriptome of Caco-2 human colon epithelial-like cells after exposure to S-nitrosoglutathione (GSNO, 1.4 μM), or Eudragit RL PO polymeric nanoparticles (NP-ERL, 50 μg/mL) or GSNO loaded nanoparticles (NP-GSNO, 50 μg/mL corresponding to (1.4 μM GSNO) we investigate whole genome microarray to identify genes regulates by exposure or not to GSNO (1.4 μM) or Eudragit RL PO polymeric nanoparticles (NP-ERL, 50 μg/mL) or GSNO loaded nanoparticles (NP-GSNO, 50 μg/mL corresponding to (1.4 μM GSNO). Changes in gene expression in Caco-2 cells incubated without (control) or with GSNO or nanoparticles for 4 h, were measured. Four biological replicates were performed as controls: S46_1_4 ; S46_1_3 ; S35_1_4 ; S35_1_3. Four biological replicates were performed for each conditions : wtih GSNO (1.4 µM) exposed cells (S46_2_2 ; S46_2_1 ; S35_2_2 ; S35_2_1), with NP-ERL (50 μg/mL) exposed cells (S46_1_2 ; S46_1_1 ; S35_1_2 ; S35_1_1) with NP-GSNO (50 μg/mL corresponding to 1.4 µM GSNO) exposed cells (S46_2_4 ; S46_2_3 ; S35_2_4 ; S35_2_3)
Project description:In this study, we investigated the gene expression induced by locally delivered gold and silicate nanoaprticles with the diameter of 20 and 100 nm in the retina. We injected nanoparticles into the vitreous cavity of 5-week-old male C57BL/6 mice. Au20 indicates gold nanoparticles of which diameters were 20 nm, Au100 gold nanoparticles of which diameters were 100 nm, Si20 silicate nanoparticles of which diameters were 20 nm, and Si100 silicate nanoparticles of which diameters were 100 nm. We intravitreally injected PBS or nanoparticles (gold and silicate) into the right eyes of 5-week-old male C57BL/6 mice (n = 12 per group). PBS-treated mice were regarded as negative control. Four retinal tissues were pooled into 1 test tube and prepared for further analyses.
Project description:As a humanized mouse antibody, SM5-1 can target a membrane protein of about 230kDa over-expressed in hepatocellular carcinoma (HCC), melanoma and breast cancer and it has been found to inhibit the progress of tumor cells. In this study, SM5-1 conjugated gold nanoparticles were prepared to study the antitumor efficacy in the treatment of HCC-LM3-fLuc tumor. The results showed that AU-SM5-1 could inhibit HCC-LM3 hepatocellular carcinoma cell proliferation up to 71.26% at the concentration of 0.5mg/ml contrast with SM5-1 and gold nanoparticles. In order to address the mechanism of the antiproliferative effects of AU-SM5-1, we examined the gene expression in HCC-LM3-fLuc tumor cells based on gene-chip screening.
Project description:As a humanized mouse antibody, SM5-1 can target a membrane protein of about 230kDa over-expressed in hepatocellular carcinoma (HCC), melanoma and breast cancer and it has been found to inhibit the progress of tumor cells. In this study, SM5-1 conjugated gold nanoparticles were prepared to study the antitumor efficacy in the treatment of HCC-LM3-fLuc tumor. The results showed that AU-SM5-1 could inhibit HCC-LM3 hepatocellular carcinoma cell proliferation up to 71.26% at the concentration of 0.5mg/ml contrast with SM5-1 and gold nanoparticles. In order to address the mechanism of the antiproliferative effects of AU-SM5-1, we examined the gene expression in HCC-LM3-fLuc tumor cells based on gene-chip screening. The gene chip results showed that some cycle-related and reactive oxygen species (ROS) related genes including up-regulated P21 and down-regulated duox2 and nox1 genes which were validated by real-time quantitative polymerase chain reaction (PCR).
Project description:In this study, we investigated the gene expression induced by locally delivered gold and silicate nanoaprticles with the diameter of 20 and 100 nm in the retina. We injected nanoparticles into the vitreous cavity of 5-week-old male C57BL/6 mice. Au20 indicates gold nanoparticles of which diameters were 20 nm, Au100 gold nanoparticles of which diameters were 100 nm, Si20 silicate nanoparticles of which diameters were 20 nm, and Si100 silicate nanoparticles of which diameters were 100 nm.
Project description:The transcriptome sequencing was used to study effects of H2S on the intracellular processes in human colon carcinoma cell line Caco-2. The results establish that excessive H2S increased the expression of genes related to inflammatory response, provoked oxidative stress, weakened mitochondrial function and strengthened mitophagy and autophagy.
Project description:We have employed whole genome microarray expression to distinguish the effect of environmental aging on the toxicity of several cerium oxide nanoparticles (NPs) in human intestinal cells compared . Cells were exposed in vitro, and datasets of differentially expressed genes were identified for each type of NPs versus control samples. NPs induced gene expression in Caco-2 cells was measured at 24 hours after exposure . Six independent experiments were performed using different NPs and controls for each experiment.