Project description:In acute myeloid leukemia (AML), leukemia stem cells (LSC) play a central role in disease progression and recurrence due to their intrinsic capacity for self-renewal and chemotherapy resistance. Whereas epigenetic mechanisms balance normal blood stem cell self-renewal and fate decisions, mutation and dysregulation of epigenetic regulators are considered fundamental to leukemia initiation and progression. Alterations in miRNA function represent a non-canonical epigenetic mechanism influencing malignant hematopoiesis, however the function of miRNA in human LSC remains undetermined. Here we show that miRNA profiling of fractionated AML populations defines an LSC-specific signature that is highly prognostic for patient survival. Gain- and loss-of-function analyses demonstrated that miR-126 restrained cell cycle progression, prevented differentiation, and increased self-renewal of human LSC. By targeting the G0 to G1 gatekeeper CDK3, miR-126 preserved LSC quiescence and promoted chemotherapy resistance. Thus, in AML, miRNAs influence patient outcome through post-transcriptional regulation of stemness programs in LSC.
Project description:In acute myeloid leukemia (AML), leukemia stem cells (LSC) play a central role in disease progression and recurrence due to their intrinsic capacity for self-renewal and chemotherapy resistance. Whereas epigenetic mechanisms balance normal blood stem cell self-renewal and fate decisions, mutation and dysregulation of epigenetic regulators are considered fundamental to leukemia initiation and progression. Alterations in miRNA function represent a non-canonical epigenetic mechanism influencing malignant hematopoiesis, however the function of miRNA in human LSC remains undetermined. Here we show that miRNA profiling of fractionated AML populations defines an LSC-specific signature that is highly prognostic for patient survival. Gain- and loss-of-function analyses demonstrated that miR-126 restrained cell cycle progression, prevented differentiation, and increased self-renewal of human LSC. By targeting the G0 to G1 gatekeeper CDK3, miR-126 preserved LSC quiescence and promoted chemotherapy resistance. Thus, in AML, miRNAs influence patient outcome through post-transcriptional regulation of stemness programs in LSC.
Project description:Life-long blood cell production is governed through the poorly understood integration of cell-intrinsic and -extrinsic control of hematopoietic stem cell (HSC) quiescence and activation. MicroRNAs (miRNAs) coordinately regulate multiple targets within signaling networks making them attractive candidate HSC regulators. We report that miR-126, a miRNA expressed in HSC and early progenitors, plays a pivotal role in restraining cell cycle progression of HSC in vitro and in vivo. miR-126 knockdown using lentiviral sponges increased HSC proliferation without inducing exhaustion, resulting in expansion of mouse and human long-term repopulating HSC. Conversely, enforced miR-126 expression impaired cell cycle entry leading to progressively reduced hematopoietic contribution. In HSC/early progenitors, miR-126 regulates multiple targets within the PI3K/AKT/GSK3β pathway thus attenuating signal transduction in response to extrinsic signals. These data establish that miR-126 sets a threshold for HSC activation and thus governs HSC pool size, demonstrating the importance of miRNA in the control of HSC function. Total RNA was extracted from cord blood Lin- cells and treated with mir126 shRNA or mir126 containing viral particles (and corresponding controls)
Project description:Life-long blood cell production is governed through the poorly understood integration of cell-intrinsic and -extrinsic control of hematopoietic stem cell (HSC) quiescence and activation. MicroRNAs (miRNAs) coordinately regulate multiple targets within signaling networks making them attractive candidate HSC regulators. We report that miR-126, a miRNA expressed in HSC and early progenitors, plays a pivotal role in restraining cell cycle progression of HSC in vitro and in vivo. miR-126 knockdown using lentiviral sponges increased HSC proliferation without inducing exhaustion, resulting in expansion of mouse and human long-term repopulating HSC. Conversely, enforced miR-126 expression impaired cell cycle entry leading to progressively reduced hematopoietic contribution. In HSC/early progenitors, miR-126 regulates multiple targets within the PI3K/AKT/GSK3β pathway thus attenuating signal transduction in response to extrinsic signals. These data establish that miR-126 sets a threshold for HSC activation and thus governs HSC pool size, demonstrating the importance of miRNA in the control of HSC function.
Project description:In acute myeloid leukemia (AML), leukemia stem cells (LSC) play a central role in disease progression and recurrence due to their intrinsic capacity for self-renewal and chemotherapy resistance. Whereas epigenetic regulation balances normal blood stem cell self-renewal and fate decisions, mutation and dysregulation of epigenetic modifiers are now considered fundamental to leukemia initiation and progression. Alterations in miRNA function represent a non-canonical epigenetic mechanism influencing malignant hematopoiesis, however the function of miRNA in LSC remains undetermined. Here we show that miRNA profiling of fractionated AML populations defines an LSC-specific signature that is highly predictive of patient survival. Gain of function genetic analysis demonstrated that miR-126 restrained cell cycle progression, prevented LSC differentiation, and increased LSC self-renewal. miR-126 promoted chemo-resistance, preserving LSC quiescence in part through suppression of the G0 to G1 gatekeeper, CDK3. Thus, in AML, miRNAs influence patient outcome through post-transcriptional regulation of stemness programs in LSC. 74 primary patient normal karyotype AML samples were analyzed for miRNA expression.
Project description:Acute myeloid leukemia (AML) harboring inv(16)(p13q22) expresses high levels of miR-126. Here we show that the CBFB-MYH11 (CM) fusion gene upregulates miR-126 expression through aberrant miR-126 transcription and perturbed miR-126 biogenesis via the HDAC8/RAN-XPO5-RCC1 axis. Aberrant miR-126 upregulation promotes survival of leukemia-initiating progenitors and is critical for initiating and maintaining CM-driven AML. We show that miR-126 enhances MYC activity through the SPRED1/PLK2-ERK-MYC axis. Notably, genetic deletion of miR-126 significantly reduced AML rate and extended survival in CM knock-in mice. Therapeutic depletion of miR-126 with an anti-miR-126 (miRisten) inhibited AML cell survival, reduced leukemia burden and leukemia stem cell (LSC) activity in inv(16) AML murine and xenograft models. Combination of miRisten with chemotherapy further enhanced the anti-leukemia and anti-LSC activity. Overall, this study provides molecular insights for the mechanism and impact of miR-126 dysregulation in leukemogenesis and highlights the potential of miR-126 depletion as a new therapeutic approach for inv(16) AML.
Project description:MicroRNA (miRNA)-126 is a known regulator of hematopoietic stem cell quiescence. We engineered murine hematopoiesis to express miRNA-126 across all differentiation stages. Thirty percent of mice developed monoclonal B cell leukemia, which was prevented or regressed when a tetracycline-repressible miRNA-126 cassette was switched off. Regression was accompanied by upregulation of cell-cycle regulators and B cell differentiation genes, and downregulation of oncogenic signaling pathways. Expression of dominant-negative p53 delayed blast clearance upon miRNA-126 switch-off, highlighting the relevance of p53 inhibition in miRNA-126 addiction. Forced miRNA-126 expression in mouse and human progenitors reduced p53 transcriptional activity through regulation of multiple p53-related targets. miRNA-126 is highly expressed in a subset of human B-ALL, and antagonizing miRNA-126 in ALL xenograft models triggered apoptosis and reduced disease burden. Study 1: Turning off miR-126 expression from an experimental murine B-ALL in vivo; Study 2: Modulation of miR-126 expression in human cord blood stem and progenitor cell populations in vitro.