Project description:IL-17 and TNF-alpha synergistically induce surface expression of IL-13Ra2 on primary lung fibroblasts, rendering them unresponsive to IL-13. Neutralizing antibodies to IL-13Ra2 restored IL-13-mediated signaling and transcriptome studies confirmed IL-13Ra2 is an IL-13 decoy receptor.
Project description:Cytokines such as TNF-alpha and IL-1beta are known for their contribution to inflammatory processes in liver . In contrast, the cytokine IL-17 has not yet been assigned a role in liver diseases. IL-17 can cooperate with TNF-alpha to induce a synergistic response on several target genes in different cell lines, but no data exist for primary hepatocytes. To enhance our knowledge on the impact of IL-17 alone and combined with TNF-alpha in primary murine hepatocytes a comprehensive microarray study was designed. IL-1beta was included as this cytokine is suggested to act in a similar manner as the combination of TNF-alpha and IL-17, especially with respect to its role in mRNA stabilization. Results: The present microarray analysis demonstrates that primary murine hepatocytes responded to IL-17 stimulation by upregulation of chemokines and genes, which are functionally responsible to increase and sustain inflammation. Cxcl2, Nfkbiz and Zc3h12a were strongly induced, whereas the majority of the genes were only very moderately upregulated. Promoter analysis revealed involvement of NF-kappaB in the activation of many genes. Combined stimulation of TNF-alpha/IL-17 resulted in enhanced induction of gene expression, but significantly synergistic effects could be applied only to a few genes, such as Nfkbiz, Cxcl2, Zc3h12 and Steap4. Comparison of the gene expression profile obtained after stimulation of TNF-alpha/IL-17 versus IL-1 proposed a IL-1beta-like effect of the latter cytokine combination. Moreover, evidence was provided that modulation of mRNA stability may be a major mechanism by which IL-17 regulates gene expression in primary hepatocytes. This assumption was exemplarily proven for Nfkbiz mRNA for the first time in hepatocytes. Our studies also suggest that RNA stability can partially be correlated to the existence of AU rich elements, but further mechanisms like the RNase-activity of the upregulated Zc3h12a have to be considered. Conclusions: Our microarray analysis gives new insights in IL-17 induced gene expression in primary hepatocytes highlighting the crosstalk with the NF-kappaB signalling pathway. Gene expression profile suggests IL-17 a role in sustaining liver inflammatory processes most likely by RNA stabilization. Altogether, our results provide evidence that IL-17 alone and in concert with TNF-alpha may play a role in inflammatory liver diseases. Primary murine hepatocytes of three animals stimulated for 1 or 4h by TNF-alpha, IL-1beta, IL-17 or TNF-alpha followed by IL-17 were used for microarray analysis.
Project description:Cytokines such as TNF-alpha and IL-1beta are known for their contribution to inflammatory processes in liver . In contrast, the cytokine IL-17 has not yet been assigned a role in liver diseases. IL-17 can cooperate with TNF-alpha to induce a synergistic response on several target genes in different cell lines, but no data exist for primary hepatocytes. To enhance our knowledge on the impact of IL-17 alone and combined with TNF-alpha in primary murine hepatocytes a comprehensive microarray study was designed. IL-1beta was included as this cytokine is suggested to act in a similar manner as the combination of TNF-alpha and IL-17, especially with respect to its role in mRNA stabilization. Results: The present microarray analysis demonstrates that primary murine hepatocytes responded to IL-17 stimulation by upregulation of chemokines and genes, which are functionally responsible to increase and sustain inflammation. Cxcl2, Nfkbiz and Zc3h12a were strongly induced, whereas the majority of the genes were only very moderately upregulated. Promoter analysis revealed involvement of NF-kappaB in the activation of many genes. Combined stimulation of TNF-alpha/IL-17 resulted in enhanced induction of gene expression, but significantly synergistic effects could be applied only to a few genes, such as Nfkbiz, Cxcl2, Zc3h12 and Steap4. Comparison of the gene expression profile obtained after stimulation of TNF-alpha/IL-17 versus IL-1 proposed a IL-1beta-like effect of the latter cytokine combination. Moreover, evidence was provided that modulation of mRNA stability may be a major mechanism by which IL-17 regulates gene expression in primary hepatocytes. This assumption was exemplarily proven for Nfkbiz mRNA for the first time in hepatocytes. Our studies also suggest that RNA stability can partially be correlated to the existence of AU rich elements, but further mechanisms like the RNase-activity of the upregulated Zc3h12a have to be considered. Conclusions: Our microarray analysis gives new insights in IL-17 induced gene expression in primary hepatocytes highlighting the crosstalk with the NF-kappaB signalling pathway. Gene expression profile suggests IL-17 a role in sustaining liver inflammatory processes most likely by RNA stabilization. Altogether, our results provide evidence that IL-17 alone and in concert with TNF-alpha may play a role in inflammatory liver diseases.
Project description:We sought to provide a comprehensive evaluation of the effects of TNF-α and IL-17 on the keratinocyte gene profile in order to identify genes that might be co-regulated by these cytokines. We then sought to determine how genes that were synergistically activated by both cytokines relate to the psoriasis transcriptome. Here, we identified 160 unique genes that were synergistically up-regulated by IL-17 and TNF-α and 188 unique genes where the two cytokines had at least an additive effect. Among highly up-regulated genes were those involved in neutrophil and lymphocyte chemotaxis, inflammation, and epidermal differentiation. Synergistically up-regulated genes included some of the highest expressed genes in lesional psoriatic skin with an impressive correlation between IL-17/TNF-α induced genes and the psoriasis gene signature. In conclusion, keratinocytes may be key drivers of pathogenetic inflammatory circuits in psoriasis through integrating responses to TNF-α and IL-17. This may explain high efficacy of targeting psoriasis with either anti-TNF-α or agents that block Th17 T-cells/IL-17 and has important implications for the development of new therapeutic agents. Comparison of keratinocyte responses to IL-17, TNF-α (1 ng mL-1 and 10 ng mL-1), and the combination of both cytokines in psoriasis.
Project description:We sought to provide a comprehensive evaluation of the effects of TNF-α and IL-17 on the keratinocyte gene profile in order to identify genes that might be co-regulated by these cytokines. We then sought to determine how genes that were synergistically activated by both cytokines relate to the psoriasis transcriptome. Here, we identified 160 unique genes that were synergistically up-regulated by IL-17 and TNF-α and 188 unique genes where the two cytokines had at least an additive effect. Among highly up-regulated genes were those involved in neutrophil and lymphocyte chemotaxis, inflammation, and epidermal differentiation. Synergistically up-regulated genes included some of the highest expressed genes in lesional psoriatic skin with an impressive correlation between IL-17/TNF-α induced genes and the psoriasis gene signature. In conclusion, keratinocytes may be key drivers of pathogenetic inflammatory circuits in psoriasis through integrating responses to TNF-α and IL-17. This may explain high efficacy of targeting psoriasis with either anti-TNF-α or agents that block Th17 T-cells/IL-17 and has important implications for the development of new therapeutic agents.
Project description:Several different immune-activated cell types with particular cytokine patterns are identified such as keratinocytes, T helper cells, cytotoxic T cells, dendritic cells, macrophages, fibroblasts, and endothelial cells. The expression of well-known pathogenic factors such as TNF-α, IL-8 (CXCL8), L-23 and IL-17 is confirmed in different inflammatory cells. Furthermore, IL-14 (TXLNA; alpha-taxilin), IL-18 and IL-32 are identified as less well-known, and putative new pathogenic factors. Prominent expression of IL-18 is found in keratinocytes, macrophages and Langerhans cells, prominent IL-32 is found in T helper and regulatory T cells, IL-14 is mainly expressed by keratinocytes, fibroblasts and macrophages. Validation of gene expression is performed by ISH of human skin samples. In a murine model of psoriasis, IL-14 and IL-18 are significantly higher expressed in psoriasis-like skin lesions than in normal skin. In an analysis of serum samples from psoriasis patients, IL-18 shows higher expression in psoriasis patients compared to controls, and serum levels in psoriasis responded to treatment with IL-17 inhibitors.
Project description:This SuperSeries is composed of the following subset Series: GSE40560: Transcriptome analysis in primary fibroblasts from HOIL-1-deficient patients upon TNF-alpha or IL-1beta stimulation GSE40561: Transcriptional analysis of whole blood in patients with auto-inflammatory disorders GSE40838: Transcriptome analysis in peripheral blood mononuclear cells (PBMC) from HOIL-1-deficient patients upon TNF-alpha or IL-1beta stimulation Refer to individual Series
Project description:HOIL-1 deficient disease is a new early onset fatal autosomal recessive human disorder charaterized by chronic auto-inflammation, recurrent invasive bacterial infections and progressive muscular amylopectinosis. We studied the effect of TNF-α and IL-1β on transcriptional changes of primary fibroblasts from HOIL-1-, MYD88- and NEMO-deficient patients. Primary fibroblasts were obtained from HOIL-1, MYD88- and NEMO-deficient patients and healthy donors and stimulated with TNF-α or IL-1β for 2 and 6 hours. RNA were extracted and globin reduced. Labeled cRNA were hybridized to Illumina Human HT-12 Beadchips.
Project description:Background: IL-17 is the defining cytokine of the Th17, Tc17, and γδ T cell populations that plays a critical role in mediating inflammation and autoimmunity. Psoriasis vulgaris is an inflammatory skin disease mediated by Th1 and Th17 cytokines with relevant contributions of IFN-γ, TNF-α, and IL-17. Despite the pivotal role IL-17 plays in psoriasis, and in contrast to the other key mediators involved in the psoriasis cytokine cascade that are capable of inducing broad effects on keratinocytes, IL-17 was demonstrated to regulate the expression of a limited number of genes in monolayer keratinocytes cultured in vitro. Methodology/Principal Findings: Given the clinical efficacy of anti-IL-17 agents is associated with an impressive reduction in a large set of inflammatory genes, we sought a full-thickness skin model that more closely resemble in vivo epidermal architecture. Using a reconstructed human epidermis (RHE), IL-17 was able to upregulate 419 gene probes and downregulate 216 gene probes. As possible explanation for the increased gene induction in the RHE model is that CEBPβ, the transcription factor regulating IL-17-responsive genes, is expressed in differentiated KCs. Conclusions/Significance: The genes identified in IL-17-treated RHE are likely relevant to the IL-17 effects in psoriasis, since ixekizumab (anti-IL-17A agent) strongly suppressed the “RHE” genes in psoriasis patients treated in vivo with this IL-17 antagonist. RHE samples were treated with IFNg, IL-22 and IL-17 and compared with control
Project description:A protein microarray kit (QAR-INF-1-2, RayBiotech Life Inc., Norcross, GA, USA) was used to detect 10 kinds of inflammatory factors in the CSF and serum (nN=5 per group), including IFN-γ, IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-13, MCP-1, and TNF-α.