Project description:In this study the transcriptomes of Acinetobacter baumannii strains ATCC 17978 and 17978hm were compared. Strain 17978hm is a hns knockout derivative of strain ATCC 17978. Strain 17978hm displays a hyper-motile phenotype on semi-solid Mueller-Hinton (MH) media (0.25% agar). ATCC 17978 and 17978hm from an 37C overnight culture were transferred to the centre of the semi-solid MH plate and incubated at 37C for 8 hours. Only 17978hm cells displayed a motile phenotype and covered the complete surface of the plate. These motile 17978hm cells and the non-motile wild-type ATCC 17978 cells were harvested and RNA was isolated. The comparative transcriptome analysis was performed using the FairPlay labeling kit and a custom made Agilent MicroArray with probes designed to coding regions of the ATCC 17978 genome. The data was analyzed using Agilent GeneSpring GX9 and the significance analysis of microarray MS Excel add-on.
Project description:S. aureus ATCC 25923 is performance standard for antimicrobial susceptibility testing. S. aureus ATCC 33591 showed resistance against erytrhromycin, penicillin, and streptomycin. We used microarray to compare RNA expression between sensitive and resistant strain of S. aureus as a preliminary research for MRSA inhibition.
Project description:Staphylococcus epidermidis is a Gram-positive, coagulase-negative (CoNS) bacterium that is carried asymptomatically on the skin and mucous membranes of virtually all human beings. It is a major cause of nosocomial infections and associated with invasive procedures (Méric et al., 2018). Virulent S. epidermidis strains contaminate indwelling medical devices, such as catheters or implants (Sabaté Brescó et al., 2017), showing pathogenicity traits, e.g., biofilm formation, cell toxicity, or methicillin resistance (Méric et al., 2018). Apart from that, even the low-virulent, low-biofilm forming strain of S. epidermidis ATCC 12228 was shown to form a biofilm under decreased oxygen conditions (Uribe-Alvarez et al., 2015). As a member of the skin and mucosal microbiome, S. epidermidis prevents the colonization of Staphylococcus aureus (Otto, 2011). Its well-studied metabolism and the ability to grow on known media make S. epidermidis a possible reconstruction candidate. A reconstruction of a genome-scale metabolic model (GEM) of S. epidermidis was created using CarveMe (Machado et al., 2018) and carefully refined in subsequent manual curation efforts, using the S. epidermidis ATCC 12228 strain sequence. The model was experimentally validated on multiple media under varying growth conditions, such as different carbon sources.