Project description:The paper describes a model on the detection of cancer based on cancer and immune biomarkers.
Created by COPASI 4.25 (Build 207)
This model is described in the article:
Improving cancer detection through combinations of cancer and immune biomarkers: a modelling approach
Raluca Eftimie and and Esraa Hassanein
J Transl Med (2018) 16:73
Abstract:
Background: Early cancer diagnosis is one of the most important challenges of cancer research, since in many can- cers it can lead to cure for patients with early stage diseases. For epithelial ovarian cancer (which is the leading cause of death among gynaecologic malignancies) the classical detection approach is based on measurements of CA-125 biomarker. However, the poor sensitivity and specificity of this biomarker impacts the detection of early-stage cancers.
Methods: Here we use a computational approach to investigate the effect of combining multiple biomarkers for ovarian cancer (e.g., CA-125 and IL-7), to improve early cancer detection.
Results: We show that this combined biomarkers approach could lead indeed to earlier cancer detection. However, the immune response (which influences the level of secreted IL-7 biomarker) plays an important role in improving and/or delaying cancer detection. Moreover, the detection level of IL-7 immune biomarker could be in a range that would not allow to distinguish between a healthy state and a cancerous state. In this case, the construction of solu- tion diagrams in the space generated by the IL-7 and CA-125 biomarkers could allow us predict the long-term evolu- tion of cancer biomarkers, thus allowing us to make predictions on cancer detection times.
Conclusions: Combining cancer and immune biomarkers could improve cancer detection times, and any predic- tions that could be made (at least through the use of CA-125/IL-7 biomarkers) are patient specific.
Keywords: Ovarian cancer, Mathematical model, CA-125 biomarker, IL-7 biomarker, Cancer detection times
This model is hosted on BioModels Database and identified by: MODEL1907050002.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide.
Please refer to CC0 Public Domain Dedication for more information.
Project description:Background: MicroRNAs (miRNAs) are small regulatory RNAs that are implicated in cancer pathogenesis and have recently shown promise as blood-based biomarkers for cancer detection. Epithelial ovarian cancer is a deadly disease for which improved outcomes could be achieved by successful early detection and enhanced understanding of molecular pathogenesis that leads to improved therapies. A critical step toward these goals is to establish a comprehensive view of miRNAs expressed in epithelial ovarian cancer tissues as well as in normal ovarian surface epithelial cells.
Project description:Purpose: Gastric cancer (GC) is one of the most common causes of cancer deaths worldwide; however, reliable and non-invasive screening methods for GC are not established. Therefore, we conducted this study to develop a biomarker for GC detection, consisting of urinary microRNAs (miRNAs). Experimental Design: We matched 306 participants by age and sex (153 pairs consisting of patients with GC and healthy controls [HCs]), then randomly divided them across three groups: (1) the discovery cohort (4 pairs); (2) the training cohort (95 pairs); (3) the validation cohort (54 pairs). Moreover, 64 participants (32 pairs) with serum samples were also enrolled in the serum cohort. Result: There were 22 urinary miRNAs with significantly aberrant expressions between the two groups in the discovery cohort. Upon multivariate analysis of the training cohort, urinary expression levels of miR-6807-5p and miR-6856-5p were significantly independent biomarkers for diagnosis of GC, in addition to Helicobacter pylori (H. pylori) status. A diagnostic panel that combined the aberrant miRNAs and H. pylori status distinguished between HC and GC samples with an area under the curve (AUC) = 0.736. In the validation cohort, urinary miR-6807-5p and miR-6856-5p showed significantly higher expression levels in the GC group, and the combination biomarker panel of miR-6807-5p, miR-6856-5p, and H. pylori status also showed excellent performance (AUC = 0.885). In addition, serum levels of miR-6807-5p and miR-6856-5p were significantly higher in the GC group. Conclusion: This novel biomarker panel enables early and non-invasive detection of GC.
Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:MicroRNAs have been established as key regulators of tumor gene expression and as prime biomarker candidates for clinical phenotypes in epithelial ovarian cancer (EOC). We analyzed the coexpression and regulatory structure of microRNAs and their colocalized gene targets in primary tumor tissue of 20 advanced epithelial ovarian cancer patients in order to construct a regulatory signature for clinical prognosis. We performed an integrative analysis to identify two prognostic microRNA/mRNA coexpression modules, each enriched for consistent biological functions. One module, enriched for malignancy related functions, was found to be upregulated in malignant versus benign samples. The second module, enriched for immune related functions, was strongly correlated with intratumoral immune infiltrates of T cells, NK cells, Cytotoxic Lymphocytes, and Macrophages. We validated the prognostic relevance of the immunological module microRNAs in the publically available TCGA dataset. These findings provide novel functional roles for microRNAs in the progression of advanced EOC and possible prognostic signatures for survival.
Project description:MicroRNAs have been established as key regulators of tumor gene expression and as prime biomarker candidates for clinical phenotypes in epithelial ovarian cancer (EOC). We analyzed the coexpression and regulatory structure of microRNAs and their colocalized gene targets in primary tumor tissue of 20 advanced epithelial ovarian cancer patients in order to construct a regulatory signature for clinical prognosis. We performed an integrative analysis to identify two prognostic microRNA/mRNA coexpression modules, each enriched for consistent biological functions. One module, enriched for malignancy related functions, was found to be upregulated in malignant versus benign samples. The second module, enriched for immune related functions, was strongly correlated with intratumoral immune infiltrates of T cells, NK cells, Cytotoxic Lymphocytes, and Macrophages. We validated the prognostic relevance of the immunological module microRNAs in the publically available TCGA dataset. These findings provide novel functional roles for microRNAs in the progression of advanced EOC and possible prognostic signatures for survival.
Project description:Background: MicroRNAs (miRNAs) are small regulatory RNAs that are implicated in cancer pathogenesis and have recently shown promise as blood-based biomarkers for cancer detection. Epithelial ovarian cancer is a deadly disease for which improved outcomes could be achieved by successful early detection and enhanced understanding of molecular pathogenesis that leads to improved therapies. A critical step toward these goals is to establish a comprehensive view of miRNAs expressed in epithelial ovarian cancer tissues as well as in normal ovarian surface epithelial cells. Methodology: We used massively parallel pyrosequencing (i.e., M-bM-^@M-^\454 sequencingM-bM-^@M-^]) to discover and characterize novel and known miRNAs expressed in primary cultures of normal human ovarian surface epithelium (HOSE) and in tissue from three of the most common histotypes of ovarian cancer. Deep sequencing of small RNA cDNA libraries derived from normal HOSE and ovarian cancer samples yielded a total of 738,710 high-quality sequence reads, generating comprehensive digital profiles of miRNA expression. Expression profiles for 498 previously annotated miRNAs were delineated and we discovered six novel miRNAs and 39 candidate miRNAs. A set of 124 miRNAs was differentially expressed in normal versus cancer samples and 38 miRNAs were differentially expressed across histologic subtypes of ovarian cancer. Taqman qRT-PCR performed on a subset of miRNAs confirmed results of the sequencing-based study.
Project description:Protein biomarkers for epithelial ovarian cancer are critical for the early detection of the cancer to improve patient prognosis and for the clinical management of the disease to monitor treatment response and to detect recurrences. Unfortunately, the discovery of protein biomarkers is hampered by the limited availability of reliable and sensitive assays needed for the reproducible quantification of proteins in complex biological matrices such as blood plasma. In recent years, targeted mass spectrometry, exemplified by Selected Reaction Monitoring (SRM) has emerged as a method, capable of overcoming this limitation. Here, we present a comprehensive SRM-based strategy for developing plasma-based protein biomarkers for epithelial ovarian cancer and illustrate how the SRM platform, when combined with rigorous experimental design and statistical analysis, can result in detection of predictive analytes.
Our biomarker development strategy first involved a discovery-driven proteomic effort to derive potential N-glycoprotein biomarker candidates for plasma-based detection of human ovarian cancer from a genetically engineered mouse model of endometrioid ovarian cancer, which accurately recapitulates the human disease. Next, 65 candidate markers selected from proteins of different abundance in the discovery dataset were reproducibly quantified with SRM assays across a large cohort of over 200 plasma samples from ovarian cancer patients and healthy controls. Finally, these measurements were used to derive a 5-protein signature for distinguishing individuals with epithelial ovarian cancer from healthy controls. The sensitivity of the candidate biomarker signature in combination with CA125 ELISA-based measurements currently used in clinic, exceeded that of CA125 ELISA-based measurements alone. The SRM-based strategy in this study is broadly applicable. It can be used in any study that requires accurate and reproducible quantification of selected proteins in a high-throughput and multiplexed fashion.
Project description:Patients with ulcerative colitis (UC) are at increased risk of colorectal cancer (CRC). Colitis-associated dysplasia (flat or polypoid) continues to be a reliable marker for CRC in these patients. However, flat lesions are often missed during endoscopy and can rapidly progress to high-grade dysplasia or cancer. microRNAs (miRs), small non-coding RNAs, have emerged as a valuable diagnostic biomarker of human cancer due to their ease of detection and stability. The goal of this study was to identify a miR signature that can serve as a reliable biomarker for the early detection of colitis-associated dysplasia in patients with long-standing colitis.