Project description:Rice is one of the most important global food crops, and is also a model organism for cereal research 31 . Complete genome sequencing of rice, together with advances in transcriptomics and proteomics, has had a dramatic impact on plant growth and 5 breeding programs 32 . Genomic analysis of DNA methylation in rice has revealed methylation patterns associated with gene bodies and promoters, and the occurrence of high levels of DNA methylation in the centromeric domain 33 . A genome-wide investigation of acetylation in rice revealed that H3K9ac and H3K27ac are mainly enriched at transcription start sites associated with active transcription 34 . Furthermore, global proteome analysis has shown that phosphorylation and succinylation are involved in diverse cellular and metabolic processes 35, 36 . However, despite these considerable advances in our knowledge, additional large-scale analysis of the lysine acetylome in rice is expected to identify many more Kac sites and acetylated proteins in this improtant crop plant. In this study, affinity enrichment and high-resolution LC-MS/MS were used for large-scale analysis of the lysine acetylome in rice variety Nipponbare. In total, 1353 lysine acetylation sites were detected in 866 protein groups in rice seedlings. Proteomic analysis showed that Kac occurs in proteins involved in diverse biological processes with varied cellular functions and subcellular localization.
Project description:Here, we present OryzaPG-DB, a rice proteome database based on shotgun proteogenomics, which incorporates the genomic features of experimental shotgun proteomics data. This version of the database was created from the results of 27 nanoLC-MS/MS runs on a hybrid ion trap-orbitrap mass spectrometer, which offers high accuracy for analyzing tryptic digests from undifferentiated cultured rice cells. Peptides were identified by searching the product ion spectra against the protein, cDNA, transcript and genome databases from Michigan State University, and were mapped to the rice genome. Approximately 3200 genes were covered by these peptides and 40 of them contained novel genomic features. Users can search, download or navigate the database per chromosome, gene, protein, cDNA or transcript and download the updated annotations in standard GFF3 format, with visualization in PNG format. In addition, the database scheme of OryzaPG was designed to be generic and can be reused to host similar proteogenomic information for other species. OryzaPG is the first proteogenomics-based database of the rice proteome, providing peptide-based expression profiles, together with the corresponding genomic origin, including the annotation of novelty for each peptide.
Project description:Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates. Keywords: Comparison of gene expression in three tissues with stress treatment and without treatment To globally elucidate potential genes involved in drought and high-salinity stresses responses in rice, an oligomer microarray covering 37,132 genes including cDNA or EST supported and putative genes was applied to study the expression profiling of shoot, flag leaf, and panicle under drought or high-salinity treatment. Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates.
Project description:Transcriptional profiling of MIT knockdown plants. MIT is a mitochondrial Fe transporter essential for rice growth and development. The goal was to determine the effects of MIT on global rice gene expression.