Project description:Secondary growth is a key characteristic evolved from seed plants and generates secondary xylem—the most abundant tissue on Earth. Recent studies have uncovered xylem developmental lineages in eudicots and magnoliids of angiosperms. However, xylem development in gymnosperms, the other representative clade of seed plants, remained elusive. We performed single-cell transcriptomics for xylem cells of conifers (Cunninghamia lanceolata), the major clade in gymnosperms. Using Seurat and scVI-based cross-species integration, we reconstructed the xylem differentiation trajectories and revealed that the radial system is conserved across seed plants, while the axial system in C. lanceolata exhibits a composite lineage architecture resembling both eudicots and magnoliids. To validate these trajectories, we established a multi-modal spatial framework incorporating spatial transcriptomics, spatial proteomics, and spatial metabolomics. These three spatial layers provided orthogonal evidence confirming cell-type identities and trajectory inference. Additionally, we identified a xylem cell population unique to gymnosperms, suggesting a lineage-specific specialization. Together, our findings uncover a more complex ancestral xylem architecture in gymnosperms and propose a progressive simplification of axial developmental programs from gymnosperms to angiosperms, highlighting a trajectory of reductive evolution in seed plant vascular development.
Project description:We sequenced sRNA from the ovular secretions of G. biloba to identify the presence of miRNAs, which provide the first evidence of the extracellular miRNAs function in ovular secretions of gymnosperms .
Project description:MicroRNAs (miRNAs) are emerging as essential, albeit poorly characterized, regulators of biological processes. The miRNA in gymnosperms is under-identified, which limits the progress of miRNA in gymnoperms. Using the high-throughput sequencing, a total of 87 conserved miRNAs were identified from Larix leptolepis. Eighteen novel miRNAs were discovered in our library, most of which were Larix-specific miRNAs.
2012-12-28 | GSE34805 | GEO
Project description:Mitochondrial RNA-editing in gymnosperms
| PRJNA758181 | ENA
Project description:Transcriptome of gymnosperms under submergence stress.
| PRJNA1131152 | ENA
Project description:miRNAs among Brazilian pine and other gymnosperms
| PRJNA523439 | ENA
Project description:Evolution of the mitochondrial genome in gymnosperms
Project description:This experiment probed for the presence of known Arabidopsis and rice microRNAs in total RNA samples derived from species representative of the major groups of land plants: Eudicots (Arabidopsis thaliana, Nicotiana benthamiana), monocots (Oryza satica, Triticum aestivum), magnoliids (Liriodendron tulipifera), gymnosperms (Pinus resinosa), ferns (Ceratopteris thalictroides), lycopods (Selaginella uncinata), and mosses (Polytrichum juniperinum). In most cases two technical or biological replicates were performed.