Project description:3 samples of R1, R2 and R3 bone marrow monocytes were compared from 3 biological replicates in 3 separate experiments. R1, R2 and R3 were sorted from triplicate experiments from pools of mice
Project description:Paracoccus spp. are isolated from both terrestrial and aquatic habitats, indicating their ubiquitous existence in the environment. Here we present the first phage isolated from this genus, vB_PmaS-R3, and its complete genome sequence. Paracoccus phage vB_PmaS-R3 is a siphophage isolated from the South China Sea. The genome sequence is 42,093 bp, with a G + C content of 56.36 %. Fifty-two open reading frames were predicted from the genome. The genome can mainly be divided into three regions: genes for DNA metabolism, regulatory genes and structure forming genes. Genes encoding DNA metabolism and structural proteins showed high sequence homology to corresponding genes of Burkholderia phage KL1 and Pseudomonas phage PA73. In addition, four gene transfer agent-like genes were found in the vB_PmaS-R3 genome. A putative L-alanoyl-D-glutamate peptidase was predicted as the endolysin. A MazG gene was found in the vB_PmaS-R3 genome, which indicates genomic adaption to the nutrient-limited marine environment.
Project description:Transcriptional profiling of Paracoccus denitrificans PD1222 wild type grown to mid-exponential phase in minimal media with either 13 uM (Cu-H) or 0.5 uM (Cu-L) Cu regimes. The goal was to define the effects of Cu-limitation on denitrification genes Two growth conditions, three biological replicates of each condition. Each sample hybridised in a two-channel hybridization against Paracoccus denitrificans genomic DNA as the comparator/reference, which also acted as a control for spot quality. Cu-concentration 13 uM (Cu-H) versus 0.5 uM Cu (Cu-L) in anaerobic growth conditions.
Project description:Transcriptional profiling of Paracoccus denitrificans PD1222 wild type grown to mid-exponential phase in minimal media with either 13 uM (Cu-H) or 0.5 uM (Cu-L) Cu regimes. The goal was to define the effects of Cu-limitation on denitrification genes
Project description:Transcriptional profiling of Paracoccus denitrificans PD1222 wild type incubated in continuous culture (continuous culture (CSTR)) in minimal media with aerobic or anaerobic conditions. The goal was to define the core respiratory genes.
Project description:Whole-genome sequencing is an important way to understand the genetic information, gene function, biological characteristics, and living mechanisms of organisms. There is no difficulty to have mega-level genomes sequenced at present. However, we encountered a hard-to-sequence genome of Pseudomonas aeruginosa phage PaP1. The shotgun sequencing method failed to dissect this genome. After insisting for 10 years and going over 3 generations of sequencing techniques, we successfully dissected the PaP1 genome with 91,715 bp in length. Single-molecule sequencing revealed that this genome contains lots of modified bases, including 51 N6-methyladenines (m6A) and 152 N4-methylcytosines (m4C). At the same time, further investigations revealed a novel immune mechanism of bacteria, by which the host bacteria can recognize and repel the modified bases containing inserts in large scale, and this led to the failure of the shotgun method in PaP1 genome sequencing. Strategy of resolving this problem is use of non-library dependent sequencing techniques or use of the nfi- mutant of E. coli DH5M-NM-1 as the host bacteria to construct the shotgun library. In conclusion, we unlock the mystery of phage PaP1 genome hard to be sequenced, and discover a new mechanism of bacterial immunity in present study. Methylation profiling of Pseudomonas aeruginosa phage PaP1 using kinetic data generated by single-molecule, real-time (SMRT) sequencing on the PacBio RS.
Project description:We report here the RNA seq results of sRNA enriched Paracoccus denitrificans grown under three different N2O levels (high N2O reffered to as CuL/ low N2O reffered to as CuH/ Low N2O aerobic reffered to as CuH O2)
Project description:Viral genomes are most vulnerable to cellular defenses at the start of the infection. A family of jumbo phages related to phage ΦKZ, which infects Pseudomonas aeruginosa, assembles a protein-based phage nucleus to protect replicating phage DNA, but how it is protected prior to phage nucleus assembly is unclear. We find that host proteins related to membrane and lipid biology interact with injected phage protein, clustering in an early phage infection (EPI) vesicle. The injected virion RNA polymerase (vRNAP) executes early gene expression until phage genome separation from the vRNAP and the EPI vesicle, moving into the nascent proteinaceous phage nucleus. Enzymes involved in DNA replication and CRISPR/restriction immune nucleases are excluded by the EPI vesicle. We propose that the EPI vesicle is rapidly constructed with injected phage proteins, phage DNA, host lipids, and host membrane proteins to enable genome protection, early transcription, localized translation, and to ensure faithful genome transfer to the proteinaceous nucleus.