Project description:Acute rejection in cardiac transplant patients is still a contributing factor to limited survival of the implanted heart. Currently there are no biomarkers in clinical use that can predict, at the time of transplantation, the likelihood of post-transplantation acute rejection, which would be of great importance for personalizing immunosuppressive treatment. Within the Biomarkers in Transplantation initiative, the predictive biomarker discovery focused on data and samples collected before or during transplantation such as: clinical variables, genes and proteins from the recipient, and genes from the donor. Based on this study, the best predictive biomarker panel contains genes from the recipient whole blood and from donor endomyocardial tissue and has an estimated area under the curve of 0.90. This biomarker panel provides clinically relevant prediction power and may help personalize immunosuppressive treatment and frequency of rejection monitoring.
Project description:Graft acceptance without the need for immunosuppressive drugs is the ultimate goal of transplantation therapy. In murine liver transplantation, allografts are accepted across major histocompatibility antigen complex barriers without the use of immunosuppressive drugs and constitute a suitable model for research on immunological rejection and tolerance. MicroRNA (miRNA) has been known to be involved in the immunological responses. In order to identify mRNAs in spontaneous liver allograft tolerance, miRNA expression in hepatic allografts was examined using this transplantation model. According to the graft pathological score and function, miR-146a, 15b, 223, 23a, 27a, 34a and 451 were upregulated compared with the expression observed in the syngeneic grafts. In contrast, miR-101a, 101b and 148a were downregulated. Our results demonstrated the alteration of miRNAs in the allografts and may indicate the role of miRNAs in the induction of tolerance after transplantation. Furthermore, our data suggest that monitoring the graft expression of novel miRNAs may allow clinicians to differentiate between rejection and tolerance. A better understanding of the tolerance inducing mechanism observed in murine hepatic allografts may provide a therapeutic strategy for attenuating allograft rejection.
Project description:Graft acceptance without the need for immunosuppressive drugs is the ultimate goal of transplantation therapy. In murine liver transplantation, allografts are accepted across major histocompatibility antigen complex barriers without the use of immunosuppressive drugs and constitute a suitable model for research on immunological rejection and tolerance. MicroRNA (miRNA) has been known to be involved in the immunological responses. In order to identify mRNAs in spontaneous liver allograft tolerance, miRNA expression in hepatic allografts was examined using this transplantation model. According to the graft pathological score and function, miR-146a, 15b, 223, 23a, 27a, 34a and 451 were upregulated compared with the expression observed in the syngeneic grafts. In contrast, miR-101a, 101b and 148a were downregulated. Our results demonstrated the alteration of miRNAs in the allografts and may indicate the role of miRNAs in the induction of tolerance after transplantation. Furthermore, our data suggest that monitoring the graft expression of novel miRNAs may allow clinicians to differentiate between rejection and tolerance. A better understanding of the tolerance inducing mechanism observed in murine hepatic allografts may provide a therapeutic strategy for attenuating allograft rejection. B10.BR mice were used as donors and B10.D2 mice were used as recipients. Liver allo-transplantation surgery on the mice was performed in this combination. Three mice from each group were sacrificed, and the liver grafts were removed on days 5, 8, 14 and 100 after transplantation. Total RNA, including miRNA was isolated. 100ng of total RNA was labeled by Cy3 and used as probe for hybridization to the microarray.
Project description:In transplantation, there is a critical need for non-invasive biomarker platforms for monitoring immunologic rejection. We hypothesized that transplanted tissues release donor specific exosomes into recipient circulation/ bodily fluids, and that the quantitation and profiling of their intra-exosomal cargoes would constitute a novel biomarker platform for monitoring rejection. We tested this hypothesis in a human into mouse xenogeneic islet transplant model, and validated the concept in clinical settings of islet and renal transplantation. In the xenogeneic model, islet transplant exosomes in recipient blood were quantified over long-term follow-up using anti-human leukocyte antigen (HLA) antibody that is only expressed on human islets (p=1.6x10-14). Transplant islet exosomes were purified using anti-HLA antibody conjugated beads and their cargoes contained bona fide islet endocrine hormone markers insulin, glucagon, and somatostatin. Rejection led to significant decrease in transplant islet exosome signal (p=4x10-15), along with distinct changes in its microRNA and proteomic profiles prior to appearance of hyperglycemia. In the clinical settings of islet (n=5) and renal (n=5) transplantation, donor exosomes with respective tissue specificity for islet β cells and renal epithelial cells were reliably characterized in recipient plasma over follow-up (up to 5 years; p=0.0001). Collectively, these findings demonstrate the biomarker potential of transplant exosome characterization for providing a non-invasive window into the conditional state of the transplant tissue.
Project description:In transplantation, there is a critical need for non-invasive biomarker platforms for monitoring immunologic rejection. We hypothesized that transplanted tissues release donor specific exosomes into recipient circulation/ bodily fluids, and that the quantitation and profiling of their intra-exosomal cargoes would constitute a novel biomarker platform for monitoring rejection. We tested this hypothesis in a human into mouse xenogeneic islet transplant model, and validated the concept in clinical settings of islet and renal transplantation. In the xenogeneic model, islet transplant exosomes in recipient blood were quantified over long-term follow-up using anti-human leukocyte antigen (HLA) antibody that is only expressed on human islets (p=1.6x10-14). Transplant islet exosomes were purified using anti-HLA antibody conjugated beads and their cargoes contained bona fide islet endocrine hormone markers insulin, glucagon, and somatostatin. Rejection led to significant decrease in transplant islet exosome signal (p=4x10-15), along with distinct changes in its microRNA and proteomic profiles prior to appearance of hyperglycemia. In the clinical settings of islet (n=5) and renal (n=5) transplantation, donor exosomes with respective tissue specificity for islet β cells and renal epithelial cells were reliably characterized in recipient plasma over follow-up (up to 5 years; p=0.0001). Collectively, these findings demonstrate the biomarker potential of transplant exosome characterization for providing a non-invasive window into the conditional state of the transplant tissue.
Project description:Liver transplantation is the only lifesaving therapy for patients with irreversible liver failure, and 30% of the recipients experience acute rejection in the first 12 months following transplantation. Acute rejection is diagnosed by core needle biopsy and noninvasive methods for predicting acute rejection could improve clinical care. MicroRNAs (miRNAs) are emerging as biomarkers of clinically significant events. We investigated whether circulating extracellular miRNA profiles in sera matched to liver allograft biopsies predict human liver allograft status. Small RNA sequencing and TaqMan low-density array analysis of RNA from biopsy matched sera identified that liver specific miR-122, and miRs -885, -210, -194, 193b, -192, -148a, -34a and -22 distinguish patients with acute rejection biopsies from those with biopsies without rejection features (false discovery rate of <0.15). We measured absolute levels of these informative 9 miRNAs using quantitative real-time PCR assays. Receiver-operating-characteristic (ROC) curve analysis of circulating levels of miRNA levels validated that all 9 miRNAs discriminate patients with acute rejection in their biopsies from those without rejection in their biopsies (P <0.01 to P<0.0001). A parsimonious diagnostic signature of miR-122 and miR-194 was diagnostic of acute rejection with a sensitivity of 79% (95% confidence interval [CI], 49% to 95%) and a specificity of 88% (95% CI, 64% to 99%) (area under the curve, 0.91; 95% CI, 0.81 to 1.00; P<0.001 by ROC curve analysis). Our findings suggest that a molecular signature of miR-122 and miR-194 in serum offers a noninvasive means of diagnosing acute rejection including mild forms in human liver allografts.
Project description:Measurement of specific gene expression in clinical samples is a promising approach for monitoring the recipient immune status to the graft in organ transplantation. Identification of biomarker genes closely associated with tolerance or rejection is critical for this monitoring protocol. Unlike previous studies, our microarray analysis focused on donor antigen-reactive T cells, which were prepared by collecting CD69+ T cells from cocultures of recipient peripheral T cells and donor antigen-presenting cells. A comparison of different recipient groups enabled us to identify several tolerance- and rejection-correlated biomarker genes, including previously unknown genes. By measuring biomarker gene expression in the CD69+ T cell fraction using quantitative reverse-transcription polymerase chain reaction, we were able to precisely detect the immune status of recipients relative to their graft.
Project description:Measurement of specific gene expression in clinical samples is a promising approach for monitoring the recipient immune status to the graft in organ transplantation. Identification of biomarker genes closely associated with tolerance or rejection is critical for this monitoring protocol. Unlike previous studies, our microarray analysis focused on donor antigen-reactive T cells, which were prepared by collecting CD69+ T cells from cocultures of recipient peripheral T cells and donor antigen-presenting cells. A comparison of different recipient groups enabled us to identify several tolerance- and rejection-correlated biomarker genes, including previously unknown genes. By measuring biomarker gene expression in the CD69+ T cell fraction using quantitative reverse-transcription polymerase chain reaction, we were able to precisely detect the immune status of recipients relative to their graft.
Project description:Background: Patients with glioblastoma (GBM) have a dramatically poor prognosis. The recent REGOMA trial suggested an overall survival benefit of regorafenib in recurrent GBM patients. Considering the extreme genetic heterogeneity of GBMs, we aimed to identify molecular biomarkers predictive of differential response to the drug. The study provides evidence that a signature based on the expression of five biomarkers could help identifying a subgroup of GBM patients exhibiting a striking survival advantage when treated with regorafenib. Despite the presented results must be confirmed in larger replication cohorts, the study highlights potential biomarker options to help guiding the clinical decision among regorafenib and other treatments in patients with relapsing GBM. Methods.Total RNA was extracted from tumor samples of patients enrolled in the REGOMA trial. Genome-wide transcriptome and miRNA profiles were associated with patients' Overall Survival (OS) and Progression Free Survival (PFS). Results. At first step, a set of 11 gene transcripts (HIF1A, CTSK, SLC2A1, KLHL12, CDKN1A, CA12, WDR1, CD53, CBR4, NIFK-AS1, RAB30-DT) and 10 miRNAs (miR-93-5p, miR-203a-3p, miR-17-5p, let-7c-3p, miR-101-3p, miR-3607-3p, miR-6516-3p, miR-301a-3p, miR-23b-3p, miR-222-3p) was filtered by comparing survival between regorafenib and lomustine arms. As second step, a minisignature of two gene transcripts (HIF1A, CDKN1A) and three miRNAs (miR-3607-3p, miR-301a-3p, miR-93-5p) identified a subgroup of patients showing prolonged survival after regorafenib administration (median OS range 10.6 - 20.8 months). Conclusions. The study provides evidence that a signature based on the expression of five biomarkers could help identifying a subgroup of GBM patients exhibiting a striking survival advantage when treated with regorafenib. Despite the presented results must be confirmed in larger replication cohorts, the study highlights potential biomarker options to help guiding the clinical decision among regorafenib and other treatments in patients with relapsing GBM.
Project description:Background: Patients with glioblastoma (GBM) have a dramatically poor prognosis. The recent REGOMA trial suggested an overall survival benefit of regorafenib in recurrent GBM patients. Considering the extreme genetic heterogeneity of GBMs, we aimed to identify molecular biomarkers predictive of differential response to the drug. The study provides evidence that a signature based on the expression of five biomarkers could help identifying a subgroup of GBM patients exhibiting a striking survival advantage when treated with regorafenib. Despite the presented results must be confirmed in larger replication cohorts, the study highlights potential biomarker options to help guiding the clinical decision among regorafenib and other treatments in patients with relapsing GBM. Methods.Total RNA was extracted from tumor samples of patients enrolled in the REGOMA trial. Genome-wide transcriptome and miRNA profiles were associated with patients' Overall Survival (OS) and Progression Free Survival (PFS). Results. At first step, a set of 11 gene transcripts (HIF1A, CTSK, SLC2A1, KLHL12, CDKN1A, CA12, WDR1, CD53, CBR4, NIFK-AS1, RAB30-DT) and 10 miRNAs (miR-93-5p, miR-203a-3p, miR-17-5p, let-7c-3p, miR-101-3p, miR-3607-3p, miR-6516-3p, miR-301a-3p, miR-23b-3p, miR-222-3p) was filtered by comparing survival between regorafenib and lomustine arms. As second step, a minisignature of two gene transcripts (HIF1A, CDKN1A) and three miRNAs (miR-3607-3p, miR-301a-3p, miR-93-5p) identified a subgroup of patients showing prolonged survival after regorafenib administration (median OS range 10.6 - 20.8 months). Conclusions. The study provides evidence that a signature based on the expression of five biomarkers could help identifying a subgroup of GBM patients exhibiting a striking survival advantage when treated with regorafenib. Despite the presented results must be confirmed in larger replication cohorts, the study highlights potential biomarker options to help guiding the clinical decision among regorafenib and other treatments in patients with relapsing GBM.