Project description:Analysis of the effects of different FGF2 variants (human FGFs-hFGF2, wild-type protein and N-terminal truncated FGF2-F2V2) on myelinating cultures generated from dissociated embryonic spinal cord after 24 hours treatment to give insights into the effects of the N-terminal region of FGF2 on FGF signalling and its implications in demyelinating diseases.
Project description:Analysis of the effects of three members of the FGF family (FGF1, FGF2 and FGF9) and bone morphogenic protein 4 (BMP4) on myelinating cultures generated from dissociated embryonic spinal cord. The results of both immediate (24 hours, T1 (24 hrs)) and long term treatments (10days, T2) give insights into the cumulative effects of sustained FGF and BMP mediated signal transduction in the pathogenesis of demyelinating diseases. Dissociated myelinating cultures were generated from neurosphere derived astrocytes (generated from striata of P1 Sprague-Dawley rats) and spinal cord cells from E15.5 Sprague-Dawley(SD) embryos. The effect of recombinant human FGF9 and other soluble factors on these in vitro myelinating cultures was investigated by adding them to the culture media after 18 days in vitro (DIV). The effects of each factor were analysed using three independent cultures at two time points (19DIV and 28 DIV).
Project description:Analysis of the effects of three members of the FGF family (FGF1, FGF2 and FGF9) and bone morphogenic protein 4 (BMP4) on myelinating cultures generated from dissociated embryonic spinal cord. The results of both immediate (24 hours, T1 (24 hrs)) and long term treatments (10days, T2) give insights into the cumulative effects of sustained FGF and BMP mediated signal transduction in the pathogenesis of demyelinating diseases.
Project description:Analysis of the effects of sulphatide specific antibody (O4, 20microg/ml) on myelinating cultures generated from dissociated embryonic rat spinal cord after 24 hours treatment to give insights into effects of lipid-specific antibodies and its implication in demyelinating diseases.
Project description:The Norway rat has important impacts on our life. They are amongst the most used research subjects, resulting in ground-breaking advances. At the same time, wild rats live in close association with us, leading to various adverse interactions. In face of this relevance, it is surprising how little is known about their natural behaviour. While recent laboratory studies revealed their complex social skills, little is known about their social behaviour in the wild. An integration of these different scientific approaches is crucial to understand their social life, which will enable us to design more valid research paradigms, develop more effective management strategies, and to provide better welfare standards. Hence, I first summarise the literature on their natural social behaviour. Second, I provide an overview of recent developments concerning their social cognition. Third, I illustrate why an integration of these areas would be beneficial to optimise our interactions with them.