Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Cerebral Aneurysm tissues and superficial temporal arteries were compared through RNA-Seq to identify differentially expressed genes, and through microRNA microarray to identify differentially expressed microRNAs. Significant miR:gene pairs were identified for potential microRNA silencing regualtory effects. To study differentially expressed genes and microRNAs in cerebral aneurysms, we collected 7 cerebral aneurysm tisses and 10 superficial temporal artery (STA) tisses from 17 individuals. We performed RNA-Seq and microRNA microarray analysis on these samples, and compared them using STA as a control.
Project description:The biological mechanisms by which cerebral aneurysms emerge, enlarge and rupture are not totally understood. In the present study, we analyzed the genome-wide gene expression profile in human intracranial aneurysms using cDNA microarrays.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs. One-condition experment, gene expression of 3A6
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:The biological mechanisms by which cerebral aneurysms emerge, enlarge and rupture are not totally understood. In the present study, we analyzed the genome-wide gene expression profile in human intracranial aneurysms using cDNA microarrays. Intracranial arterial aneurysm samples (n = 3) and normal superficial temporal artery samples (control, n = 3) were obtained from individual subjects. All aneurysm samples were unruptured aneurysms confirmed by Magnetic Resonance Image or Digital Subtraction Angiography. Affymetrix HU133 Plus 2.0 microarrays were used to compare gene expression levels between aneurismal and normal blood vessels.