Project description:We performed exon array analysis to define and compare the transcriptomic changes, in terms of splicing and gene expression profilings, occurring in human neuroblastoma cells upon knocking down TDP-43 and FUS RNA-binding proteins (RBP), with the final aim to unravel the biological role of these RBPs in neuronal cells.
Project description:FUS/TLS and TDP-43 are RNA/DNA-binding proteins integrally involved in amyotrophic lateral sclerosis (ALS) and frontal temporal dementia. FUS/TLS is shown to bind RNAs from >5,500 genes in mouse and human brain, primarily through a GUGGU binding motif. A characteristic sawtooth-like binding pattern is identified, supporting co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system is shown to alter levels or splicing of >970 mRNAs, most of which are distinct from the RNAs whose maturation is dependent on TDP-43. Nonetheless, only 55 RNAs are reduced upon depletion of either TDP-43 or FUS/TLS from mouse brain and human neurons differentiated from pluripotent stem cells, including mRNAs transcribed from genes with exceptionally long introns and that encode proteins essential for neuronal integrity. A subset of these is significantly lowered in FUS/TLSR521G and TDP-43G298S mutant fibroblasts and in TDP-43 aggregate-containing motor neurons in sporadic ALS, evidence pointing to a common loss-of-function pathway as one component underlying motor neuron death from misregulation of TDP-43 or FUS/TLS. Microarray of Fus/Tls in 8 week mouse brain
Project description:FUS/TLS and TDP-43 are RNA/DNA-binding proteins integrally involved in amyotrophic lateral sclerosis (ALS) and frontal temporal dementia. FUS/TLS is shown to bind RNAs from >5,500 genes in mouse and human brain, primarily through a GUGGU binding motif. A characteristic sawtooth-like binding pattern is identified, supporting co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system is shown to alter levels or splicing of >970 mRNAs, most of which are distinct from the RNAs whose maturation is dependent on TDP-43. Nonetheless, only 55 RNAs are reduced upon depletion of either TDP-43 or FUS/TLS from mouse brain and human neurons differentiated from pluripotent stem cells, including mRNAs transcribed from genes with exceptionally long introns and that encode proteins essential for neuronal integrity. A subset of these is significantly lowered in FUS/TLSR521G and TDP-43G298S mutant fibroblasts and in TDP-43 aggregate-containing motor neurons in sporadic ALS, evidence pointing to a common loss-of-function pathway as one component underlying motor neuron death from misregulation of TDP-43 or FUS/TLS. CLIP of Fus/Tls in 8 week mouse brain and adult human brain
Project description:FUS/TLS and TDP-43 are RNA/DNA-binding proteins integrally involved in amyotrophic lateral sclerosis (ALS) and frontal temporal dementia. FUS/TLS is shown to bind RNAs from >5,500 genes in mouse and human brain, primarily through a GUGGU binding motif. A characteristic sawtooth-like binding pattern is identified, supporting co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system is shown to alter levels or splicing of >970 mRNAs, most of which are distinct from the RNAs whose maturation is dependent on TDP-43. Nonetheless, only 55 RNAs are reduced upon depletion of either TDP-43 or FUS/TLS from mouse brain and human neurons differentiated from pluripotent stem cells, including mRNAs transcribed from genes with exceptionally long introns and that encode proteins essential for neuronal integrity. A subset of these is significantly lowered in FUS/TLSR521G and TDP-43G298S mutant fibroblasts and in TDP-43 aggregate-containing motor neurons in sporadic ALS, evidence pointing to a common loss-of-function pathway as one component underlying motor neuron death from misregulation of TDP-43 or FUS/TLS. RNA-Seq of Fus/Tls in 8 week mouse brain
Project description:Cross-linking and immunoprecipitation coupled with high-throughput sequencing was used to identify binding sites within 6,304 genes as the brain RNA targets for TDP-43, an RNA binding protein which when mutated causes Amyotrophic Lateral Sclerosis (ALS). Use of massively parallel sequencing and splicing-sensitive junction arrays revealed that levels of 601 mRNAs are changed (including Fus/Tls, progranulin, and other transcripts encoding neurodegenerative disease-associated proteins) and 965 altered splicing events are detected (including in sortilin, the receptor for progranulin), following depletion of TDP-43 from adult brain with antisense oligonucleotides. RNAs whose levels are most depleted by reduction in TDP-43 are derived from genes with very long introns and which encode proteins involved in synaptic activity. Lastly, TDP-43 was found to auto-regulate its synthesis, in part by directly binding and enhancing splicing of an intron within the 3’ untranslated region of its own transcript, thereby triggering nonsense mediated RNA degradation. RNAseq in control and Tdp-43 knockdown mouse striatum
Project description:FUS/TLS and TDP-43 are RNA/DNA-binding proteins integrally involved in amyotrophic lateral sclerosis (ALS) and frontal temporal dementia. FUS/TLS is shown to bind RNAs from >5,500 genes in mouse and human brain, primarily through a GUGGU binding motif. A characteristic sawtooth-like binding pattern is identified, supporting co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system is shown to alter levels or splicing of >970 mRNAs, most of which are distinct from the RNAs whose maturation is dependent on TDP-43. Nonetheless, only 55 RNAs are reduced upon depletion of either TDP-43 or FUS/TLS from mouse brain and human neurons differentiated from pluripotent stem cells, including mRNAs transcribed from genes with exceptionally long introns and that encode proteins essential for neuronal integrity. A subset of these is significantly lowered in FUS/TLSR521G and TDP-43G298S mutant fibroblasts and in TDP-43 aggregate-containing motor neurons in sporadic ALS, evidence pointing to a common loss-of-function pathway as one component underlying motor neuron death from misregulation of TDP-43 or FUS/TLS.
Project description:FUS/TLS and TDP-43 are RNA/DNA-binding proteins integrally involved in amyotrophic lateral sclerosis (ALS) and frontal temporal dementia. FUS/TLS is shown to bind RNAs from >5,500 genes in mouse and human brain, primarily through a GUGGU binding motif. A characteristic sawtooth-like binding pattern is identified, supporting co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system is shown to alter levels or splicing of >970 mRNAs, most of which are distinct from the RNAs whose maturation is dependent on TDP-43. Nonetheless, only 55 RNAs are reduced upon depletion of either TDP-43 or FUS/TLS from mouse brain and human neurons differentiated from pluripotent stem cells, including mRNAs transcribed from genes with exceptionally long introns and that encode proteins essential for neuronal integrity. A subset of these is significantly lowered in FUS/TLSR521G and TDP-43G298S mutant fibroblasts and in TDP-43 aggregate-containing motor neurons in sporadic ALS, evidence pointing to a common loss-of-function pathway as one component underlying motor neuron death from misregulation of TDP-43 or FUS/TLS.
Project description:FUS/TLS and TDP-43 are RNA/DNA-binding proteins integrally involved in amyotrophic lateral sclerosis (ALS) and frontal temporal dementia. FUS/TLS is shown to bind RNAs from >5,500 genes in mouse and human brain, primarily through a GUGGU binding motif. A characteristic sawtooth-like binding pattern is identified, supporting co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system is shown to alter levels or splicing of >970 mRNAs, most of which are distinct from the RNAs whose maturation is dependent on TDP-43. Nonetheless, only 55 RNAs are reduced upon depletion of either TDP-43 or FUS/TLS from mouse brain and human neurons differentiated from pluripotent stem cells, including mRNAs transcribed from genes with exceptionally long introns and that encode proteins essential for neuronal integrity. A subset of these is significantly lowered in FUS/TLSR521G and TDP-43G298S mutant fibroblasts and in TDP-43 aggregate-containing motor neurons in sporadic ALS, evidence pointing to a common loss-of-function pathway as one component underlying motor neuron death from misregulation of TDP-43 or FUS/TLS.
Project description:Cross-linking and immunoprecipitation coupled with high-throughput sequencing was used to identify binding sites within 6,304 genes as the brain RNA targets for TDP-43, an RNA binding protein which when mutated causes Amyotrophic Lateral Sclerosis (ALS). Use of massively parallel sequencing and splicing-sensitive junction arrays revealed that levels of 601 mRNAs are changed (including Fus/Tls, progranulin, and other transcripts encoding neurodegenerative disease-associated proteins) and 965 altered splicing events are detected (including in sortilin, the receptor for progranulin), following depletion of TDP-43 from adult brain with antisense oligonucleotides. RNAs whose levels are most depleted by reduction in TDP-43 are derived from genes with very long introns and which encode proteins involved in synaptic activity. Lastly, TDP-43 was found to auto-regulate its synthesis, in part by directly binding and enhancing splicing of an intron within the 3M-bM-^@M-^Y untranslated region of its own transcript, thereby triggering nonsense mediated RNA degradation. CLIP of Tdp-43 in 8 week mouse brain.
Project description:TDP-43, FUS, and TAF15 are implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We integrate CLIP-seq and RNA Bind-N-Seq technologies to discover that TAF15 binds to ~4,900 RNAs enriched for GGUA motifs. In the mouse brain, TAF15 and FUS, but not TDP-43, exhibit strikingly similar RNA binding profiles, yet they alter the expression of distinct mRNA populations upon their individual depletions. TAF15 has a minimal role in alternative splicing and instead affects RNA turnover, consistent with an enrichment of TAF15 binding sites in 3â?? untranslated regions. In human stem cell-derived motor neurons, loss of both TAF15 and FUS affected mRNAs distinct from those altered by loss of either protein alone, revealing redundant roles for TAF15 and FUS in maintaining mRNA levels. Furthermore, concomitant rather than individual depletion of TAF15 and FUS more closely resembles RNA profiles of motor neurons derived from FUS R521G ALS patients or from late-stage, sporadic ALS patients. Our study reveals convergent and divergent mechanisms by which FUS, TAF15 and TDP-43 affects RNA metabolism in neurological disease. RNA-seq, CLIP-seq and arrays in mouse and human against TAF15 knockdowns This Series represents CLIP-seq sample(s).