Project description:We used nAnT-iCAGE – unbiased single-nucleotide resolution method for genome-wide transcription start site (TSS) capture, to produce libraries from Saccharomyces cerevisiae total RNA. Our goal was to investigate S. cerevisiae core-promoters and assess the rules of transcription initiation in BY4741 strain grown in YPD media.
Project description:The goal of these experiments was to define the targets of Ty3 transposition in Saccharomyces cerevisiae. Ty3 is a retroviruslike element that is found at the transcription initiation site of chromosomal tRNA genes.
Project description:During fermentation Saccharomyces yeast produces various aroma-active metabolites determining the different characteristics of aroma and taste in fermented beverages. Amino acid utilization by yeast during brewer´s wort fermentation is seen as linked to flavour profile. To better understand the relationship between the biosynthesis of aroma relevant metabolites and the importance of amino acids, DNA microarrays were performed for Saccharomyces cerevisiae strain S81 and Saccharomyces pastorianus var. carlsbergensis strain S23, respectively. Thereby, changes in transcription of genes were measured, which are associated with amino acid assimilation and its derived aroma-active compounds during fermentation.
Project description:"Determining the Mitochondrial Methyl Proteome in Saccharomyces cerevisiae using Heavy Methyl SILAC"
Heavy Methyl SILAC proteomics toward characterization and validation of mitochondrial, methylated proteins.
Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:During fermentation Saccharomyces yeast produces various aroma-active metabolites determining the different characteristics of aroma and taste in fermented beverages. Amino acid utilization by yeast during brewer´s wort fermentation is seen as linked to flavour profile. To better understand the relationship between the biosynthesis of aroma relevant metabolites and the importance of amino acids, DNA microarrays were performed for Saccharomyces cerevisiae strain S81 and Saccharomyces pastorianus var. carlsbergensis strain S23, respectively. Thereby, changes in transcription of genes were measured, which are associated with amino acid assimilation and its derived aroma-active compounds during fermentation. 48 samples were used in this experiment
Project description:LPS was used as a stressor to stimulate the model organism Saccharomyces cerevisiae. To detect extracellular metabolic information of VOCs. To provide a molecular basis for cellular metabolism of VOCs by proteome.
Project description:Quantitative analysis of transcription start site selection in Saccharomyces cerevisiae reveals control by DNA sequence, RNA Polymerase II activity, and NTP levels