Project description:Prostate tumors are among the most heterogeneous of cancers, both histologically and clinically. Microarray expression analysis was used to determine whether global biological differences underlie common pathological features of prostate cancer and to identify genes that might anticipate the clinical behavior of this disease. While no expression correlates of age, serum prostate specific antigen (PSA), and measures of local invasion were found, a set of genes was identified that strongly correlated with the state of tumor differentiation as measured by Gleason score. Moreover, a model using gene expression data alone accurately predicted patient outcome following prostatectomy. These results support the notion that the clinical behavior of prostate cancer is linked to underlying gene expression differences that are detectable at the time of diagnosis. golub-00142 Assay Type: Gene Expression Provider: Affymetrix Array Designs: HG_U95Av2 Organism: Homo sapiens (ncbitax)
Project description:Prostate tumors are among the most heterogeneous of cancers, both histologically and clinically. Microarray expression analysis was used to determine whether global biological differences underlie common pathological features of prostate cancer and to identify genes that might anticipate the clinical behavior of this disease. While no expression correlates of age, serum prostate specific antigen (PSA), and measures of local invasion were found, a set of genes was identified that strongly correlated with the state of tumor differentiation as measured by Gleason score. Moreover, a model using gene expression data alone accurately predicted patient outcome following prostatectomy. These results support the notion that the clinical behavior of prostate cancer is linked to underlying gene expression differences that are detectable at the time of diagnosis.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Prostate cancer has a broad spectrum of clinical behavior, hence biomarkers are urgently needed for risk stratification. We previously described the protective effect of signal transducer and activator of transcription 3 (STAT3) in a prostate cancer mouse model. We now show the importance of STAT3-regulated metabolic functions and explain their influence on aggressive prostate cancer. By utilizing a gene co-expression network in addition to laser microdissected proteomics from human and murine FFPE samples, we established a workflow that facilitates the discovery of new biomarkers. We thereby identified the protective effect of pyruvate dehydrogenase kinase 4 (PDK4) in prostate cancer. PDK4 is a key regulator of the citrate cycle and low PDK4 is significantly associated with disease recurrence.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.