Project description:The progesterone receptor specific gene targets were investigated in ovarian and breast cancer cell lines where FOXO1 was found to be a primary factor that cooperates with PR to activate cellular senescence genes (including p21) specifically in ovarian cells. ABSTRACT: Progesterone promotes differentiation coupled to proliferation and pro-survival in the breast, but inhibits estrogen-driven growth in the reproductive tract and ovaries. Herein, it is demonstrated, using progesterone receptor (PR) isoform-specific ovarian cancer model systems, that PR-A and PR-B promote distinct gene expression profiles that differ from PR-driven genes in breast cancer cells. In ovarian cancer models, PR-A primarily regulates genes independently of progestin, while PR-B is the dominant ligand-dependent isoform. Notably, FOXO1 and the PR/FOXO1 target-gene p21 (CDKN1A) are repressed by PR-A, but induced by PR-B. In the presence of progestin, PR-B, but not PR-A, robustly induced cellular senescence via FOXO1-dependent induction of p21 and p15 (CDKN2B). Chromatin immunoprecipitation (ChIP) assays performed on PR-isoform specific cells demonstrated that while each isoform is recruited to the same PRE-containing region of the p21 promoter in response to progestin, only PR-B elicits active chromatin marks. Overexpression of constitutively active FOXO1 in PR-A-expressing cells conferred robust ligand-dependent upregulation of the PR-B target genes GZMA, IGFBP1, and p21, and induced cellular senescence. In the presence of endogenous active FOXO1, PR-A was phosphorylated on Ser294 and transactivated PR-B at PR-B target genes; these events were blocked by the FOXO1 inhibitor (AS1842856). PR isoform-specific regulation of the FOXO1/p21 axis recapitulated in human primary ovarian tumor explants treated with progestin; loss of progestin sensitivity correlated with high AKT activity. IMPLICATIONS: This study indicates FOXO1 as a critical component for progesterone signaling to promote cellular senescence and reveals a novel mechanism for transcription factor control of hormone sensitivity.
Project description:The progesterone receptor specific gene targets were investigated in ovarian and breast cancer cell lines where FOXO1 was found to be a primary factor that cooperates with PR to activate cellular senescence genes (including p21) specifically in ovarian cells. ABSTRACT: Progesterone promotes differentiation coupled to proliferation and pro-survival in the breast, but inhibits estrogen-driven growth in the reproductive tract and ovaries. Herein, it is demonstrated, using progesterone receptor (PR) isoform-specific ovarian cancer model systems, that PR-A and PR-B promote distinct gene expression profiles that differ from PR-driven genes in breast cancer cells. In ovarian cancer models, PR-A primarily regulates genes independently of progestin, while PR-B is the dominant ligand-dependent isoform. Notably, FOXO1 and the PR/FOXO1 target-gene p21 (CDKN1A) are repressed by PR-A, but induced by PR-B. In the presence of progestin, PR-B, but not PR-A, robustly induced cellular senescence via FOXO1-dependent induction of p21 and p15 (CDKN2B). Chromatin immunoprecipitation (ChIP) assays performed on PR-isoform specific cells demonstrated that while each isoform is recruited to the same PRE-containing region of the p21 promoter in response to progestin, only PR-B elicits active chromatin marks. Overexpression of constitutively active FOXO1 in PR-A-expressing cells conferred robust ligand-dependent upregulation of the PR-B target genes GZMA, IGFBP1, and p21, and induced cellular senescence. In the presence of endogenous active FOXO1, PR-A was phosphorylated on Ser294 and transactivated PR-B at PR-B target genes; these events were blocked by the FOXO1 inhibitor (AS1842856). PR isoform-specific regulation of the FOXO1/p21 axis recapitulated in human primary ovarian tumor explants treated with progestin; loss of progestin sensitivity correlated with high AKT activity. IMPLICATIONS: This study indicates FOXO1 as a critical component for progesterone signaling to promote cellular senescence and reveals a novel mechanism for transcription factor control of hormone sensitivity.
Project description:Progesterone promotes differentiation coupled to proliferation and pro-survival in the breast, but inhibits estrogen-driven growth in the reproductive tract and ovaries. Herein, it is demonstrated, using progesterone receptor (PR) isoform-specific ovarian cancer model systems, that PR-A and PR-B promote distinct gene expression profiles that differ from PR-driven genes in breast cancer cells. In ovarian cancer models, PR-A primarily regulates genes independently of progestin, while PR-B is the dominant ligand-dependent isoform. Notably, FOXO1 and the PR/FOXO1 target-gene p21 (CDKN1A) are repressed by PR-A, but induced by PR-B. In the presence of progestin, PR-B, but not PR-A, robustly induced cellular senescence via FOXO1-dependent induction of p21 and p15 (CDKN2B). Chromatin immunoprecipitation (ChIP) assays performed on PR-isoform specific cells demonstrated that while each isoform is recruited to the same PRE-containing region of the p21 promoter in response to progestin, only PR-B elicits active chromatin marks. Overexpression of constitutively active FOXO1 in PR-A-expressing cells conferred robust ligand-dependent upregulation of the PR-B target genes GZMA, IGFBP1, and p21, and induced cellular senescence. In the presence of endogenous active FOXO1, PR-A was phosphorylated on Ser294 and transactivated PR-B at PR-B target genes; these events were blocked by the FOXO1 inhibitor (AS1842856). PR isoform-specific regulation of the FOXO1/p21 axis recapitulated in human primary ovarian tumor explants treated with progestin; loss of progestin sensitivity correlated with high AKT activity. IMPLICATIONS: This study indicates FOXO1 as a critical component for progesterone signaling to promote cellular senescence and reveals a novel mechanism for transcription factor control of hormone sensitivity. This SuperSeries is composed of the SubSeries listed below.
Project description:<p><strong>BACKGROUND:</strong> Periodontal ligament mesenchymal stem cells (PDLSCs) are a promising cell resource for cell-based regenerative medicine in dentistry. PDLSCs inevitably acquire a senescent phenotype after prolonged in vitro expansion, and the key regulators of cells during replicative senescence remain unclear.</p><p><strong>METHODS:</strong> We cultured periodontal ligament stem cells to passages 4, 10 and 20 (P4, P10, P20). The senescent phenotypes, proliferation and migration ability of PDLSCs (P4, P10, P20) were detected, and non-targeted metabonomic sequencing was performed. We treated PDLSCs with AICAR and detected the expression of FOXO1, FOXO3a, FOXO6 and AMPK phosphorylation (p-AMPK) levels of replicating senescent PDLSCs to explore the correlation between the metabolic changes and the AMPK pathway.</p><p><strong>RESULTS:</strong> Immunofluorescence staining of γ-H2AX, β-galactosidase staining, cell scratch test and qPCR were performed to confirm the occurrence of replicative senescence in PDLSCs during passaging. Three groups of cells at passage 4 (P4), passage 10 (P10) and passage 20 (P20) were collected for non-targeted metabolomics analysis. Metabonomic sequencing showed that the metabolism of replicative senescence in PDLSCs varied significantly. In particular, the content of fatty acid metabolites decreased with senescence, including capric acid, stearic acid, myristic acid and dodecanoic acid. KEGG pathway analysis showed that the AMPK signaling pathway was closely related to AMP levels. The AMP:ATP ratio increased in senescent PDLSCs; however, the levels of p-AMPK and the profile of FOXO1 and FOXO3a, which are downstream of the AMPK signaling pathway, decreased with senescence. We treated PDLSCs with AICAR, an activator of the AMPK pathway, and the phosphorylated AMPK level at P20 PDLSCs was partially restored. </p><p><strong>CONCLUSION:</strong> In summary, our study suggests that the metabolic process of PDLSCs is active in the early stage of senescence, prefers to consume fatty acids, and is attenuated in the later stages of senescence. AMP accumulates in replicative senescent PDLSCs; however, the sensitivity of AMPK phosphorylation sites is impaired, causing senescent PDLSCs to fail to respond to changes in energy metabolism. Our findings provide a new basis for the clinical application of periodontal ligament stem cells.</p>
Project description:Alveolar rhabdomyosarcoma (aRMS) is an aggressive sarcoma of skeletal muscle characterized by expression of the PAX3-FOXO1 fusion gene. Despite its discovery over almost 20 years ago, PAX3-FOXO1 remains an enigmatic tumor driver. Previously, we reported that PAX3-FOXO1 supports aRMS initiation by enabling bypass of cellular senescence. Here, we show that bypass occurs in part by PAX3-FOXO1-mediated upregulation of RASSF4, a Ras-association domain family (RASSF) member, which then suppresses the evolutionarily conserved mammalian Hippo/Mst1 pathway. RASSF4 loss-of-function activates Hippo/Mst1 and inhibits downstream YAP, causing aRMS cell cycle arrest and senescence. This is the first evidence for an oncogenic role for RASSF4, and a novel mechanism for Hippo signaling suppression in human cancer. Human skeletal muscle myoblasts (HSMMs) were retrovirally transduced with either an empty vector (Vp, pK1) or PAX3-FOXO1 (PFp, pK1-PAX3-FOXO1) and selected on puromycin. Presenescent (presen) cells were harvested before the senescence checkpoint. Since cells expressing PAX3-FOXO1 can bypass the senescence checkpoint, postsenescent (postsen) cells expressing PAX3-FOXO1 were also harvested. the gene expression affected by the introduction of PAX3-FOXO1
Project description:Progesterone, acting through its isoform receptors PGR-A and PGR-B, is essential for regulating uterus function. The ratio between these isoforms is dynamic and context-dependent, driving distinct transcriptional programs. The upstream mechanisms controlling the PGR isoform balance and their functional impact in the uterus remain poorly understood. In this study, we identified two distal PGR enhancers in endometrial stromal cells located 60 kb and 220 kb upstream of the PGR transcription start site. We found that in comparison to PGR promoter-targeting which favors a PGR-B dominant profile, activation of these enhancers shifts the isoform ratio by increasing PGR-A and decreasing PGR-B expression. Bulk RNA-sequencing revealed that the isoform balance alters the progesterone-regulated transcriptome. PGR-A/B-equivalent cells displayed pro-inflammatory gene signatures, whereas PGR-B-dominant cells exhibited suppression of inflammatory signaling and cell cycle activity. Cut&Run assays identified differential genomic binding patterns associated with each isoform profile, and integration with chromatin interaction maps suggest direct regulation of distinct gene subsets. Upstream, ESR1 indirectly activated the PGR-A isoform dominantly, potentially through cooperation with FOXO1 at the U2 enhancer. This study identifies a novel enhancer-driven mechanism regulating PGR isoform dynamics and sheds light on how their imbalance in the endometrial stroma may reshape progesterone signaling in health and disease.
Project description:Progesterone, acting through its isoform receptors PGR-A and PGR-B, is essential for regulating uterus function. The ratio between these isoforms is dynamic and context-dependent, driving distinct transcriptional programs. The upstream mechanisms controlling the PGR isoform balance and their functional impact in the uterus remain poorly understood. In this study, we identified two distal PGR enhancers in endometrial stromal cells located 60 kb and 220 kb upstream of the PGR transcription start site. We found that in comparison to PGR promoter-targeting which favors a PGR-B dominant profile, activation of these enhancers shifts the isoform ratio by increasing PGR-A and decreasing PGR-B expression. Bulk RNA-sequencing revealed that the isoform balance alters the progesterone-regulated transcriptome. PGR-A/B-equivalent cells displayed pro-inflammatory gene signatures, whereas PGR-B-dominant cells exhibited suppression of inflammatory signaling and cell cycle activity. Cut&Run assays identified differential genomic binding patterns associated with each isoform profile, and integration with chromatin interaction maps suggest direct regulation of distinct gene subsets. Upstream, ESR1 indirectly activated the PGR-A isoform dominantly, potentially through cooperation with FOXO1 at the U2 enhancer. This study identifies a novel enhancer-driven mechanism regulating PGR isoform dynamics and sheds light on how their imbalance in the endometrial stroma may reshape progesterone signaling in health and disease.