Project description:Gene expression level of Clostridioides difficile (C. difficile) strain R20291 comparing control C. difficile carring pMTL84151 as vector plasmid with C. difficile conjugated with a pMTL84151-03890 gene. Goal was to determine the effects of 03890 gene conjugation on C. difficile strain R20291 gene expression.
Project description:We isolated suppressors of a ∆ddl mutant strain with constitutively active allelles of the vanS gene. VanS is a histidine kinase of a two-component system that regulates expression of the vanG operon. Transcriptomes of wild-type and ∆ddl vanS (R334L) strains were compared.
Project description:BackgroundClostridioides difficile is a Gram-positive anaerobic bacterium that can produce the toxins TcdA and/or TcdB and is considered an opportunistic pathogen. C. difficile is mainly transmitted as endospores, which germinate to produce the pathogenic vegetative cells under suitable conditions in the gut. To efficiently screen novel therapeutic- interventions against the proliferation of C. difficile within a complex microbial community, platforms are needed that facilitate parallel experimentation. In order to allow for screening of novel interventions a medium-to-high throughput in vitro system is desirable. To this end, we have developed the 96-well CDi-screen platform that employs an adapted simulated ileal effluent medium (CDi-SIEM) and allows for culturing of pathogenic C. difficile.MethodsC. difficile strain ATCC 43599 was inoculated in the form of vegetative cells and spores into the CDi-screen in the presence and absence of a cultured fecal microbiota and incubated for 48h. To demonstrate its utility, we investigated the effect of the human milk oligosaccharide 2'-Fucosyllactose (2'-FL) at 4 and 8 mg/mL on C. difficile outgrowth and toxin production in the CDi-screen. The test conditions were sampled after 24 and 48 hours. C. difficile -specific primers were used to monitor C. difficile growth via qPCR and barcoded 16S rRNA gene amplicon sequencing facilitated the in-depth analysis of gut microbial community dynamics.ResultsC. difficile ATCC 43599 proliferated in CDi-SIEM, both when inoculated as spores and as vegetative cells. The strain reached cell numbers expressed as C. difficile genome equivalents of up to 10 8 cells per mL after 24h of incubation. 2'-FL significantly inhibited the outgrowth of the ATTC 43599 strain within a complex human gut microbial community in the CDi-screen. In addition, a dose-dependent modulation of the gut microbial community composition by 2'-FL supplementation was detected, with a significant increase in the relative abundance of the genus Blautia in the presence of 2'-FL.ConclusionThe CDi-screen is suitable for studying C. difficile proliferation in a complex gut ecosystem and for screening for anti-pathogenic interventions that target C. difficile directly and/or indirectly through interactions with the gut microbiota. Different doses of compounds such as in this study the dose of the human milk oligosaccharide 2'-FL can be screened for efficacy in the inhibition of C. difficile proliferation.
Project description:Metabolomic and transcriptomic analysis of changes in the exponential and stationary phase of Clostridioides difficile after cultivation in casamino acids medium (reference) and supplemented with L-lactate and the connection to toxin production.
Project description:The experiment intends to reveal the difference in gene expression profiles between the wild-type strain and the ∆rpoN mutant of Clostridioides difficile. We first constructed the ∆rpoN mutant, and the phenotypic changes of the ∆rpoN mutant against the wild-type strain were studied. To further elucidate the mechanism of phenotypic changes of the ∆rpoN mutant, RNA-sequencing experiments were carried out to reveal the underlying mechanism of phenotypic changes.
Project description:The experiment intends to reveal the difference in gene expression profiles between the wild-type strain and the ∆cwp66 mutant of Clostridioides difficile. We first constructed the ∆cwp66 mutant, and the phenotypic changes of the ∆cwp66 mutant against the wild-type strain were studied. To further elucidate the mechanism of phenotypic changes of the ∆cwp66 mutant, RNA-sequencing experiments were carried out to reveal the underlying mechanism of phenotypic changes.