Project description:immunotherapy offers a better prognosis for pancreatic cancer patients. As a direct extension of this work, various new therapy methods that are under exploration and clinical trials could be assessed or evaluated using the newly developed mathematical prognosis model.
Project description:The present data suggest that the infiltration of inactive CD8+ T cells with low clonality is induced by chemotaxis in the HIGH group, possibly leading to poor prognosis of GC patients.
Project description:In this study, we investigated miRNA expression profiles in ileal mucosa from CD patients in different settings (post-operative recurrent (POR) CD, newly diagnosed CD and late stage CD)) and controls.
Project description:The paper "Metabolomic Machine Learning Predictor for Diagnosis and Prognosis of Gastric Cancer" addresses the need for non-invasive diagnostic tools for gastric cancer (GC). Traditional methods like endoscopy are invasive and expensive. The authors conducted a targeted metabolomics analysis of 702 plasma samples to develop machine learning models for GC diagnosis and prognosis. The diagnostic model, using 10 metabolites, achieved a sensitivity of 0.905, outperforming conventional protein marker-based methods. The prognostic model effectively stratified patients into risk groups, surpassing traditional clinical models.
I have successfully reproduced the diagnosis model from the paper. This machine learning-based system differentiates GC patients from non-GC controls using metabolomics data from plasma samples analyzed by liquid chromatography-mass spectrometry (LC-MS). The model focuses on 10 metabolites, including succinate, uridine, lactate, and serotonin. Employing LASSO regression and a random forest classifier, the model achieved an AUROC of 0.967, with a sensitivity of 0.854 and specificity of 0.926. This model significantly outperforms traditional diagnostic methods and underscores the potential of integrating machine learning with metabolomics for early GC detection and treatment.
Project description:Immunotherapy has improved the prognosis of patients with advanced non-small cell lung
cancer (NSCLC), but only a small subset of patients achieved clinical benefit. The purpose of our study was to integrate multidimensional data using a machine learning method to predict the therapeutic efficacy of immune checkpoint inhibitors (ICIs) monotherapy in patients with advanced NSCLC.The authors retrospectively enrolled 112 patients with stage IIIB-IV NSCLC receiving ICIs monotherapy. The random forest (RF) algorithm was used to establish efficacy prediction models based on five different input datasets, including precontrast computed tomography (CT) radiomic data, postcontrast CT radiomic data, combination of the two CT radiomic data, clinical data, and a combination of radiomic and clinical data. The 5-fold cross-validation was used to train and test the random forest classifier. The performance of the models was assessed according to the area under the curve (AUC) in the receiver operating characteristic (ROC) curve. Among these models(RF MLP LR XGBoost), our reproduced onnx models have better performance, especially for random forest. The response variable with a value (1/0) indicates the (efficacy/inefficacy) of PD-1/PD-L1 monotherapy in patients with advanced NSCLC