Project description:D-galactose orally intake ameliorate DNCB-induced atopic dermatitis by modulating microbiota composition and quorum sensing. The increased abundance of bacteroidetes and decreased abundance of firmicutes was confirmed. By D-galactose treatment, Bacteroides population was increased and prevotella, ruminococcus was decreased which is related to atopic dermatitis.
Project description:The main goal of the project is the study the associations between the gut metagenome and human health. The dataset contains data for n=7211 FINRISK 2002 participants who underwent fecal sampling. Demultiplexed shallow shotgun metagenomic sequences were quality filtered and adapter trimmed using Atropos (Didion et al., 2017), and human filtered using Bowtie2 (Langmead and Salzberg, 2012).
Project description:The main goal of the project is the study the associations between the gut metagenome and human health. The dataset contains data for n=7211 FINRISK 2002 participants who underwent fecal sampling. Demultiplexed shallow shotgun metagenomic sequences were quality filtered and adapter trimmed using Atropos (Didion et al., 2017), and human filtered using Bowtie2 (Langmead and Salzberg, 2012).
Project description:Host-microbiome-dietary interactions play crucial roles in regulating human health, yet direct functional assessment of their interplays, cross-regulations and downstream disease impacts remains challenging. We adopted metagenome-informed metaproteomics (MIM), in both mice and humans, to simultaneously explore host, dietary, and species-level microbiome interactions across diverse scenarios, including commensal and pathogen colonization, nutritional modifications, and antibiotic-induced perturbations. Implementation of MIM in murine auto-inflammation and in human IBD characterized a ‘compositional dysbiosis’ and a concomitant, species-specific ‘functional dysbiosis’ driven by suppressed commensal responses to inflammatory host signals. Microbiome transfers unraveled early-onset kinetics of these host-commensal cross-responsive patterns, while predictive analyses identified candidate fecal host-microbiome IBD biomarker protein pairs outperforming S100A8/S100A9 (calprotectin). Importantly, a simultaneous fecal nutrient assessment enabled determination of IBD-related consumption patterns, dietary treatment compliance and small-intestinal digestive aberrations. Collectively, a parallelized dietary-bacterial-host MIM assessment functionally uncovers trans-kingdom interactomes shaping gastrointestinal ecology, while offering personalized diagnostic and therapeutic insights into microbiome-associated disease.
2025-06-10 | PXD058570 | Pride
Project description:Antarctic cyanobacteria isolated from hypoliths and endoliths