Project description:BRAHMA (BRM) is a conserved SWI/SNF-type chromatin remodeling ATPase implicated in many key nuclear events. Histone H3 Lysine 27 (H3K27) demethylases specifically remove the repressive histone mark, trimethylation of H3K27 (H3K27me3). Both proteins are thought to play active roles in regulating gene activities at the chromatin level, but their genome-wide coordination remains to be determined. In Arabidopsis thaliana, RELATIVE OF EARLY FLOWERING 6 (REF6, also known as JMJ12) is the first identified plant H3K27 demethylase. Here, genome-wide analyses revealed that REF6 targets to thousands of genes across the Arabidopsis genome and co-localizes with BRM at more than 1,000 genes, many of which are genes involved in response to various stimuli, especially plant hormones. Loss of REF6 activity results in decreased BRM occupancy at hundreds of BRM-REF6 co-targets, indicating that REF6 is required for the recruitment of BRM to chromatin. Further, REF6 targets to genomic loci that contains the CTCTGTTT motif in vivo
Project description:Chromatin, in addition to its purely structural functions, is considered a major regulatory system coordinating various genetic networks in eukaryotes. Constant changes of gene expression programs are especially important for plants, which have to respond to environment by modulating their growth and development during whole lifetime. External and developmental signals can be transmitted through signaling cascades to chromatin remodeling complexes like SWI/SNF, which alter chromatin structure by moving, ejecting or restructuring nucleosomes. Genetic studies in Arabidopsis thaliana revealed that SWI/SNF chromatin remodeling complexes are critical for proper plant development and growth. Especially, BRM, a catalytic subunit of the complex, was shown to directly regulate several genes with important functions in leaf development, flowering initiation, as well as gibberellin and abscisic acid signaling. In this study, we profiled BRM global binding regions in Arabidopsis genome by ChIP-chip analysis. We found that BRM can bind to thousands of genes, many of which have key functions in hormone and stress signaling.
Project description:BRAHMA (BRM) is a conserved SWI/SNF-type chromatin remodeling ATPase implicated in many key nuclear events. Histone H3 Lysine 27 (H3K27) demethylases specifically remove the repressive histone mark, trimethylation of H3K27 (H3K27me3). Both proteins are thought to play active roles in regulating gene activities at the chromatin level, but their genome-wide coordination remains to be determined. In Arabidopsis thaliana, RELATIVE OF EARLY FLOWERING 6 (REF6, also known as JMJ12) is the first identified plant H3K27 demethylase. Here, genome-wide analyses revealed that REF6 targets to thousands of genes across the Arabidopsis genome and co-localizes with BRM at more than 1,000 genes, many of which are genes involved in response to various stimuli, especially plant hormones. Loss of REF6 activity results in decreased BRM occupancy at hundreds of BRM-REF6 co-targets, indicating that REF6 is required for the recruitment of BRM to chromatin. Further, REF6 targets to genomic loci that contains the CTCTGTTT motif in vivo through its C2H2 zinger finger domains. Consistently, the two proteins activate the expression of a set of common genes in plant cells. Thus, this work demonstrates a genome-wide coordination between an H3K27me3 demethylase and a chromatin remodelling protein. Examination of global RNA expression in 14-day-old wt, brm-1, ref6-1 and brm-1 ref6-1 seedlings. Three biological replicates for each one.
Project description:BRAHMA (BRM) is a conserved SWI/SNF-type chromatin remodeling ATPase implicated in many key nuclear events. Histone H3 Lysine 27 (H3K27) demethylases specifically remove the repressive histone mark, trimethylation of H3K27 (H3K27me3). Both proteins are thought to play active roles in regulating gene activities at the chromatin level, but their genome-wide coordination remains to be determined. In Arabidopsis thaliana, RELATIVE OF EARLY FLOWERING 6 (REF6, also known as JMJ12) is the first identified plant H3K27 demethylase. Here, genome-wide analyses revealed that REF6 targets to thousands of genes across the Arabidopsis genome and co-localizes with BRM at more than 1,000 genes, many of which are genes involved in response to various stimuli, especially plant hormones. Loss of REF6 activity results in decreased BRM occupancy at hundreds of BRM-REF6 co-targets, indicating that REF6 is required for the recruitment of BRM to chromatin. Further, REF6 targets to genomic loci that contains the CTCTGTTT motif in vivo Examination of BRM occupancy in 14-day-old wt and ref6-1 seedlings. Examination of REF6 occupancy in 14-day-old wt and brm-1 seedlings. Examination of global RNA expression in 14-day-old wt, brm-1, ref6-1 and brm-1 ref6-1 seedlings. Examination of H3K27me3 profiles in 14-day-old wt, brm-1, ref6-1, and brm-1 ref6-1 seedlings.
Project description:BRAHMA (BRM) is a conserved SWI/SNF-type chromatin remodeling ATPase implicated in many key nuclear events. Histone H3 Lysine 27 (H3K27) demethylases specifically remove the repressive histone mark, trimethylation of H3K27 (H3K27me3). Both proteins are thought to play active roles in regulating gene activities at the chromatin level, but their genome-wide coordination remains to be determined. In Arabidopsis thaliana, RELATIVE OF EARLY FLOWERING 6 (REF6, also known as JMJ12) is the first identified plant H3K27 demethylase. Here, genome-wide analyses revealed that REF6 targets to thousands of genes across the Arabidopsis genome and co-localizes with BRM at more than 1,000 genes, many of which are genes involved in response to various stimuli, especially plant hormones. Loss of REF6 activity results in decreased BRM occupancy at hundreds of BRM-REF6 co-targets, indicating that REF6 is required for the recruitment of BRM to chromatin. Further, REF6 targets to genomic loci that contains the CTCTGTTT motif in vivo
Project description:ATP-dependent chromatin remodelers control the accessibility of genomic DNA through nucleosome mobilization. However, the dynamics of genome exploration by remodelers, and the role of ATP hydrolysis in this process remain unclear. We used live-cell imaging of Drosophila polytene nuclei to monitor Brahma (BRM) remodeler interactions with its chromosomal targets. In parallel, we measured local chromatin condensation and its effect on BRM association. Surprisingly, only a small portion of BRM is bound to chromatin at any given time. BRM binds decondensed chromatin but is excluded from condensed chromatin, limiting its genomic search space. BRM-chromatin interactions are highly dynamic, whereas histone-exchange is limited and much slower. Intriguingly, loss of ATP hydrolysis enhanced chromatin retention and clustering of BRM, which was associated with reduced histone turnover. Thus, ATP hydrolysis couples nucleosome remodeling to remodeler release, driving a continuous transient probing of the genome.
Project description:The aim of this study was to analyze the impact of autotetraploidy on gene expression in Arabidopsis thaliana by comparing diploid versus tetraploid transcriptomes. In particular, this included the comparison of the transcriptome of different tetraploid A. thaliana ecotypes (Col-0 vs. Ler-0). The study was extended to address further aspects. One was the comparison of the transcriptomes in subsequent generations. This intended to obtain information on the genome wide stability of autotetraploid gene expression. Another line of work compared the transcriptomes of different diploid vs. tetraploid tissues. This aimed to investigate whether particular gene groups are specifically affected during the development of A. thaliana autotetraploids. Samples 1-8: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Col-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 9-12: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Ler-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 13-24: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Col-0 leaves (6th - 8th). The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 25-32: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Ler-0 leaves (6th - 8th). The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 33-36: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid vs. tetraploid Ler-0 seedlings from the second (F2) and third (F3) generation after induction, respectively. The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 37-40: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid vs. tetraploid Col-0 seedlings from the second (F2) and third (F3) generation after induction, respectively. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 41-44: Arabidopsis thaliana Col-0/Ler-0 diploid transcriptome. Transcriptional profiling and comparison of diploid Col-0 vs. diploid Ler-0 seedlings. The experiment was carried out with pedigree of esrablished lines. Samples 45-48: Arabidopsis thaliana Col-0/Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid Col-0 vs tetraploid Ler-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 and Ler-0 lines.
Project description:BRAHMA (BRM) is a conserved SWI/SNF-type chromatin remodeling ATPase implicated in many key nuclear events. Histone H3 Lysine 27 (H3K27) demethylases specifically remove the repressive histone mark, trimethylation of H3K27 (H3K27me3). Both proteins are thought to play active roles in regulating gene activities at the chromatin level, but their genome-wide coordination remains to be determined. In Arabidopsis thaliana, RELATIVE OF EARLY FLOWERING 6 (REF6, also known as JMJ12) is the first identified plant H3K27 demethylase. Here, genome-wide analyses revealed that REF6 targets to thousands of genes across the Arabidopsis genome and co-localizes with BRM at more than 1,000 genes, many of which are genes involved in response to various stimuli, especially plant hormones. Loss of REF6 activity results in decreased BRM occupancy at hundreds of BRM-REF6 co-targets, indicating that REF6 is required for the recruitment of BRM to chromatin. Further, REF6 targets to genomic loci that contains the CTCTGTTT motif in vivo through its C2H2 zinger finger domains. Consistently, the two proteins activate the expression of a set of common genes in plant cells. Thus, this work demonstrates a genome-wide coordination between an H3K27me3 demethylase and a chromatin remodelling protein.
Project description:H2A.X is an H2A variant histone in eukaryotes, unique for its ability to respond to DNA damage, initiating the DNA repair pathway. H2A.X replacement within the histone octamer is mediated by the FAcilitates Chromatin Transactions (FACT) complex, a key chromatin remodeler. FACT is required for DEMETER (DME)-mediated DNA demethylation at certain loci in Arabidopsis thaliana female gametophytes during reproduction. Here, we sought to investigate whether H2A.X is involved in DME- and FACT-mediated DNA demethylation during reproduction. H2A.X is encoded by two genes in Arabidopsis genome, HTA3 and HTA5. We generated h2a.x double mutants, which displayed a normal growth profile, whereby flowering time, seed development, and root tip organization, S-phase progression and proliferation were all normal. However, h2a.x mutants were more sensitive to genotoxic stress, consistent with previous reports. H2A.X fused to Green Fluorescent Protein (GFP) under the H2A.X promoter was highly expressed especially in newly developing Arabidopsis tissues, including in male and female gametophytes, where DME is also expressed. We examined DNA methylation in h2a.x developing seeds and seedlings using whole genome bisulfite sequencing, and found that CG DNA methylation is decreased genome-wide in h2a.x mutant seeds. Hypomethylation was most striking in transposon bodies, and occurred on both parental alleles in the developing endosperm, but not the embryo or seedling. h2a.x-mediated hypomethylated sites overlapped DME targets, but also included other loci, predominately located in heterochromatic transposons and intergenic DNA. Our genome-wide methylation analyses suggest that H2A.X could function in preventing access of the DME demethylase to non-canonical sites. Alternatively, H2A.X may be involved in recruiting methyltransferases to those sites. Overall, our data show that H2A.X is required to maintain DNA methylation homeostasis in the unique chromatin environment of the Arabidopsis endosperm.