Project description:Arabidopsis fc2-1 mutants fail to properly de-etiolate after a prolonged period in the dark. Our goal was to monitor whole genome expression during the first 2 hours of de-etiolation to determine the cuase of this growth arrest. In comparison with other mutants that also affect de-etiolation, we identified a subset of genes specifically regulated by FC2 function during de-etiolation.
Project description:Arabidopsis fc2-1 mutants fail to properly de-etiolate after a prolonged period in the dark. Our goal was to monitor whole genome expression during the first 2 hours of de-etiolation to determine the cuase of this growth arrest. In comparison with other mutants that also affect de-etiolation, we identified a subset of genes specifically regulated by FC2 function during de-etiolation. Seedlings were grown in the dark for 4 days and then exposed to white light for 30 or 120 minutes to initiate de-etiolation and photomorphogenesis
Project description:Shade avoidance syndrome (SAS) is a strategy of major adaptive significance that includes the elongation of vegetative structures and leaf hyponasty. Major transcriptional rearrangements underlie for the reallocation of resources to elongate vegetative structures and redefine the plant architecture under shade to compete for photosynthesis light. BBX28 is a transcription factor involved in seedling de-etiolation and flowering in Arabidopsis thaliana, but its function in the SAS is completely unknown. Here we studied the function of BBX28 in the regulation of gene expression under simulated shade conditions.
Project description:Light triggers chloroplast differentiation whereby the etioplast transforms into a photosynthesizing chloroplast and the thylakoid rapidly emerges. However, the sequence of events during chloroplast differentiation remains poorly understood. Here we used whole-seedling proteome data to quantify changes in protein abundances during the course of de-etiolation within the first four days of light exposure. This data complements quantitative lipid and (ultra)structural data described in Pipitone et al. (doi: https://doi.org/10.1101/2020.08.30.274043).
Project description:De-etiolation consists of a series of developmental and physiological changes that a plant undergoes in response to light. During this process light, an important environmental signal, triggers the inhibition of mesocotyl elongation and the production of photosynthetically active chloroplasts, and etiolated leaves transition from the “sink” stage to the “source” stage. De-etiolation has been extensively studied in maize (Zea mays L). However, little is known about how this transition is regulated. In this study, we describe a quantitative proteomic and phosphoproteomic atlas of the de-etiolation process in maize. We identified 16,420 proteins and quantified 14,168. In addition, 8,746 phosphorylation sites within 3,110 proteins were identified. From the proteomic and phosphoproteomic data combined, we identified a total of 17,436 proteins, 27.6% of which are annotated protein coding genes in the Zea_mays AGPv3.28 database. Only 6% of proteins significantly changed in abundance during de-etiolation. In contrast, the phosphorylation levels of more than 25% of phosphoproteins significantly changed; these included proteins involved in gene expression and homeostatic pathways and rate-limiting enzymes involved in photosynthesis light and carbon reactions. Based on phosphoproteomic analysis, 34% (1,057) of all phosphoproteins identified in this study contained more than three phosphorylation sites, and 37 proteins contained more than 16 phosphorylation sites, which shows that multi-phosphorylation is ubiquitous during the de-etiolation process. Our results suggest that plants might preferentially regulate the level of PTMs rather than protein abundance for adapting to changing environments. The study of PTMs could thus better reveal the regulation of de-etiolation.