Project description:Dietary lipids and gut microbiota may both influence adipose tissue physiology. By feeding conventional and germ-free mice high fat diets with different lipid compositon we aimed to investigate how dietary lipids and the gut microbiota interact to influence inflammation and metabolism in the liver Wild-type C57Bl/6 male mice 11 weeks of age were fed isocaloric diets (45% kcal fat) with either menhaden fish oil (Research Diets, D05122102) or lard (Research Diets, D10011202) for 11 weeks. Liver samples were harvested at the end of the experiment and analyzed by microarray.
Project description:Dietary lipids and gut microbiota may both influence adipose tissue physiology. By feeding conventional and germ-free mice high fat diets with different lipid compositon we aimed to investigate how dietary lipids and the gut microbiota interact to influence inflammation and metabolism in epididymal adipiose tissue (EWAT) Wild-type C57Bl/6 male mice 11 weeks of age were fed isocaloric diets (45% kcal fat) with either menhaden fish oil (Research Diets, D05122102) or lard (Research Diets, D10011202) for 11 weeks. Epididymal WAT samples were harvested at the end of the experiment and analyzed by microarray.
Project description:We used microarray analysis to examine which genes are differentially expressed in mice that received a combination of fish oil and indomethacin. We fed low density lipoprotein receptor knock-out (LDLR-/-) mice with 6% of olive oil (control) or fish oil diets in the presence or absence of indomethacin for 12 weeks. We collected total RNA from liver samples and pooled 6 RNA samples in each group for Affymetrix microarrays.
Project description:Vegetable oils (VO) are possible substitutes for fish oil in aquafeeds but are limited by their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA). However, oilseed crops can be modified to produce n-3 LC-PUFA such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, representing a potential option to fill the gap between supply and demand of these important nutrients. Camelina sativa was metabolically engineered to produce a seed oil with around 15 % total n-3 LC-PUFA to potentially substitute for fish oil in salmon feeds. Post-smolt Atlantic salmon (Salmo salar) were fed for 11-weeks with one of three experimental diets containing either fish oil (FO), wild-type Camelina oil (WCO) or transgenic Camelina oil (DCO) as added lipid source to evaluate fish performance, nutrient digestibility, tissue n-3 LC-PUFA, and metabolic impact determined by liver transcriptome analysis. The DCO diet did not affect any of the performance or health parameters studied and enhanced apparent digestibility of EPA and DHA compared to the WCO diet. The level of total n-3 LC-PUFA was higher in all the tissues of DCO-fed fish than in WCO-fed fish with levels in liver similar to those in fish fed FO. Endogenous LC-PUFA biosynthetic activity was observed in fish fed both the Camelina oil diets as indicated by the liver transcriptome and levels of intermediate metabolites such as docosapentaenoic acid, with data suggesting that the dietary combination of EPA and DHA inhibited desaturation and elongation activities. Expression of genes involved in phospholipid and triacylglycerol metabolism followed a similar pattern in fish fed DCO and WCO despite the difference in n-3 LC-PUFA contents.
Project description:Elevated circulating triglycerides, which are considered a risk factor for cardiovascular disease, can be targeted by treatment with fenofibrate or fish oil. To gain insight into underlying mechanisms, we carried out a comparative transcriptomics and metabolomics analysis of the effect of 2 week treatment withfenofibrate and fish oil in mice. Plasma triglycerides were significantly decreased byfenofibrate (-49.1%) and fish oil (-21.8%), whereas plasma cholesterol was increased by fenofibrate (+29.9%) and decreased by fish oil (-32.8%). Levels of various phospholipid species were specifically decreased by fish oil, while levels of Krebs cycle intermediates were increased specifically by fenofibrate. Plasma levels of many amino acids were altered by fenofibrate and to a lesser extent by fish oil. Both fenofibrate and fish oil upregulated genes involved in fatty acid metabolism, and downregulated genes involved in blood coagulation and fibrinolysis. Significant overlap in gene regulation by fenofibrate and fish oil was observed, reflecting their property as high or low affinity agonist for PPARα, respectively. Fenofibrate specifically downregulated genes involved in complement cascade and inflammatory response. Fish oil specifically downregulated genes involved in cholesterol and fatty acid biosynthesis, and upregulated genes involved in amino acid and arachidonic acid metabolism. Taken together, the data indicate that despite being similarly potent towards modulating plasma free fatty acids, cholesterol and triglyceride levels, fish oil causes modest changes in gene expression likely via activation of multiple mechanistic pathways, whereas fenofibrate causes pronounced gene expression changes via a single pathway, reflecting the key difference between nutritional and pharmacological intervention. Expression profiling of liver from mice fed control diet, fish oil or fenofibrate for 2 weeks.
Project description:Fish oil, olive oil, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they can protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wistar Kyoto rats were fed either a normal diet, or a diet enriched with fish, olive, or coconut oil starting at 4 weeks of age for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4h/day for 2 consecutive days. The fish oil diet completely abolished phenylephrine-induced vasoconstriction that was increased following ozone exposure in the animals fed all other diets. Only the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors in the lung. Serum miRNA profile was assessed using small RNA-sequencing in normal and fish oil groups and demonstrated marked depletion of a variety of miRNAs, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that while fish oil offered protection from ozone-induced aortic vasoconstriction, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective dietary supplement.
Project description:Diet plays a major role in altering the composition and function of the gut microbiota. Previously most studies have focused on the effects of fiber, fat, and different amounts of protein on the gut microbiota. In this study we investigated how different sources of protein affect the gut microbiota of mice. We fed conventional and germ-free C57BL/6J mice a series of defined diets where the source of dietary protein was the key difference, which made up twenty or forty percent of the diet. The dietary protein sources used were purified protein. The diets were fed to the same mice for one week each with a fecal sample collected at the end of each week. The diets were fed in this order: standard chow, 20% soy, 20% casein, 20% rice, 40% soy, 20% yeast, 40% casein, 20% pea, 20% egg white protein, 20% chicken bone broth, and lastly at the end of the experiment half of the mice were fed the 20% soy and half the mice the 20% casein diet again as a control. We did not collect fecal samples for the chicken bone broth diet as the diet was stopped prematurely due to diet intolerance. 12 germ-free mice (6 female, 6 male) in four cages were used. 12 mice with a conventional gut microbiota in four cages were used (6 female, 6 male). One germ-free mouse was found dead after diet 5 (20% yeast) and one conventional mouse was sacrificed after the second diet (20% casein). No sample could be collected from one of the conventional mice after the 20% egg white diet.
Project description:Currently, the only sustainable alternatives for dietary fish oil (FO) in aquafeeds are vegetable oils (VO) that are devoid of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA). Entirely new sources of n-3 LC-PUFA such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids through de novo production is a potential solution to fill the gap between supply and demand of these important nutrients. Camelina sativa,was metabolically engineered to produce a seed oil (ECO) with > 20 % EPA and its potential to substitute for FO in Atlantic salmon feeds was tested. Fish were fed one of three experimental diets containing FO, wild-type camelina oil (WCO) or ECO as the sole lipid sources for 7-weeks. Inclusion of ECO did not affect any of the performance parameters studied and enhanced apparent digestibility of individual n-6 and n-3 PUFA compared to dietary WCO. High levels of EPA were maintained in brain, liver and intestine (pyloric caeca), and levels of DPA and DHA were increased in liver and intestine of fish fed ECO compared to fish fed WCO likely due to increased LC-PUFA biosynthesis based on up-regulation of the genes. Fish fed WCO and ECO showed slight lipid accumulation within hepatocytes similar to that with WCO, although not significantly different to fish fed FO. The regulation of a small number of genes could be attributed to the specific effect of ECO (311 features) with metabolism being the most affected category. The EPA oil from transgenic Camelina (ECO) could be used as a substitute for FO, however it is a hybrid oil containing both FO (EPA) and VO (18:2n-6) fatty acid signatures that resulted in similarly mixed metabolic and physiological responses.
Project description:Germ free (GF) and conventionalized (CONV-D) wild-type C57Bl/6 male mice in the CARB-fed, 24h fasted, and 30d trained states; plus GF and CONV-D CARB-fed Ppara-/- mice. CARB-fed indicates a standard polysaccharide-rich mouse chow diet. CONV-D mice are those that received a microbiota transplant from conventionally raised mice 2-3 weeks before experiment was initiated Keywords: RNA Expression Array