Project description:The CD117 mast/stem cell growth factor receptor tyrosine kinase (KIT) is critical for haematopoiesis, melanogenesis, and stem cell maintenance. KIT is commonly activated by mutation in cancers including acute myeloid leukaemia, melanoma, and gastrointestinal stromal tumours (GISTs). The kinase and the juxtamembrane domains of KIT are mutation hotspots; with the kinase domain mutation D816V common in leukaemia, and the juxtamembrane domain mutation V560G common in GISTs. Given the importance of mutant KIT signalling in cancer, we have conducted a proteomic and phosphoproteomic analysis of D816V- and V560G-KIT mutations, using an FDCP1 isogenic cell line model.
Project description:Gastrointestinal stromal tumours (GISTs) represent a heterogeneous group of tumours of mesenchymal origin characterized by gain-of-function mutations in KIT or PDGFRA of the type III receptor tyrosine kinase family. Although mutations in either receptor are thought to drive an early oncogenic event through similar pathways, two previous studies reported the mutation-specific gene expression profiles. However, their further conclusions were rather discordant. To clarify the molecular characteristics of differentially expressed genes according to GIST receptor mutations, we combined microarray-based analysis with detailed functional annotations. Experiment Overall Design: 29 samples: 15 with KIT mutation detected, 11 with PDGFRA mutation detected, 3 with no mutation detected
Project description:Gastrointestinal stromal tumours (GISTs) represent a heterogeneous group of tumours of mesenchymal origin characterized by gain-of-function mutations in KIT or PDGFRA of the type III receptor tyrosine kinase family. Although mutations in either receptor are thought to drive an early oncogenic event through similar pathways, two previous studies reported the mutation-specific gene expression profiles. However, their further conclusions were rather discordant. To clarify the molecular characteristics of differentially expressed genes according to GIST receptor mutations, we combined microarray-based analysis with detailed functional annotations.
Project description:Activating mutation of KIT is well known as a key molecular event for the development of gastrointestinal stromal tumors(GISTs). Dysregulation of microRNAs(miRNA) might elucidate KIT mutation, KIT overexpression and the resulting tumorigenesis in GIST. Herein we identified miRNA expression profiles that associated with KIT mutation and KIT overexpression in GIST by miRNA microarrays and Real-time PCR in GISTs. The potentially target genes of selected miRNAs were analyzed by bioinformatic techniques with GO and KEGG pathway analysis. We showed that 6 miRNAs were differentially expressed in CD117IHC+/KITmutant GISTs compared to CD117IHC-/wild-type GISTs. Of these, 2 miRNAs including miR-483-3p and miR-589 were up-regulated, while the other 4 miRNAs including miR-140-5p, miR-148b-3p, miR-1587 and miR-4507 were down-regulated. GO and KEGG analysis demonstrated that miRNAs with significant change were involved in regulation of target genes related to the development of GIST. Among the candidate miRNAs studied, miR-148b-3p and miR-140-5p may be involved in GIST tumorigenesis via targeting mutant KIT or via intermediate molecules of PDGFRA, PI3K-AKT and MAPK pathway, such as AKT2, MAPK1, MAPK10, STAT5A, SMAD4, SMAD5 and PTEN. Furthermore, the reduced expression of miR-140-5p and miR-148b-3p were inversely correlated with high-risk grade, recurrence and metastasis of GIST. The current findings indicated that miR-148b-3p and miR-140-5p were not only involved in tumorigenesis of GIST, but might also participate in the progression of GIST and could be considered as novel biomarkers for potentially predicting the prognosis of GIST.
Project description:Gastrointestinal Stromal Tumor frequently harbor mutations in the KIT receptor tyrosine kinase and depend on its activity for growth. This underlies the efficacy of imatinib, a inhibitor of KIT activity, in GIST management. GIST882 is a patient derived GIST cell line that harbor a K640E exon 13 KIT mutation and is sensitive to imatinib treatment. To analyze the downstream effect of KIT inhibition, GIST882 cells were treated for 8 hours with 1μM Imatinib.
Project description:Soft-tissue tumours are derived from mesenchymal cells such as fibroblasts, muscle cells, or adipocytes, but for many such tumours the histogenesis is controversial. We aimed to start molecular characterisation of these rare neoplasms and to do a genome-wide search for new diagnostic markers. We analysed gene-expression patterns of 41 soft-tissue tumours with spotted cDNA microarrays. After removal of errors introduced by use of different microarray batches, the expression patterns of 5520 genes that were well defined were used to separate tumours into discrete groups by hierarchical clustering and singular value decomposition. Synovial sarcomas, gastrointestinal stromal tumours, neural tumours, and a subset of the leiomyosarcomas, showed strikingly distinct gene-expression patterns. Other tumour categories--malignant fibrous histiocytoma, liposarcoma, and the remaining leiomyosarcomas--shared molecular profiles that were not predicted by histological features or immunohistochemistry. Strong expression of known genes, such as KIT in gastrointestinal stromal tumours, was noted within gene sets that distinguished the different sarcomas. However, many uncharacterised genes also contributed to the distinction between tumour types. These results suggest a new method for classification of soft-tissue tumours, which could improve on the method based on histological findings. Large numbers of uncharacterised genes contributed to distinctions between the tumours, and some of these could be useful markers for diagnosis, have prognostic significance, or prove possible targets for treatment.
Project description:Although the main cause of gastrointestinal stromal tumor (GIST) is due to gain-of-function mutation of the c-kit gene in the interstitial cells of Cajal, concomitant genetic or epigenetic changes other than c-kit are thought to occur in the development of metastasis. We used microarrays to identify genes that were up-regulated and down-regulated in the metastatic liver GIST.
Project description:Soft-tissue tumours are derived from mesenchymal cells such as fibroblasts, muscle cells, or adipocytes, but for many such tumours the histogenesis is controversial. We aimed to start molecular characterisation of these rare neoplasms and to do a genome-wide search for new diagnostic markers. We analysed gene-expression patterns of 41 soft-tissue tumours with spotted cDNA microarrays. After removal of errors introduced by use of different microarray batches, the expression patterns of 5520 genes that were well defined were used to separate tumours into discrete groups by hierarchical clustering and singular value decomposition. Synovial sarcomas, gastrointestinal stromal tumours, neural tumours, and a subset of the leiomyosarcomas, showed strikingly distinct gene-expression patterns. Other tumour categories--malignant fibrous histiocytoma, liposarcoma, and the remaining leiomyosarcomas--shared molecular profiles that were not predicted by histological features or immunohistochemistry. Strong expression of known genes, such as KIT in gastrointestinal stromal tumours, was noted within gene sets that distinguished the different sarcomas. However, many uncharacterised genes also contributed to the distinction between tumour types. These results suggest a new method for classification of soft-tissue tumours, which could improve on the method based on histological findings. Large numbers of uncharacterised genes contributed to distinctions between the tumours, and some of these could be useful markers for diagnosis, have prognostic significance, or prove possible targets for treatment. A disease state experiment design type is where the state of some disease such as infection, pathology, syndrome, etc is studied. Computed