Project description:To study the soil mcirobial functional communities and the nutrient cycles couplings changes after exposure to different contaminant
Project description:Plant growth and development depends on the availability of nutrients and water resources in the soil. The increased frequencies of drought events over recent years have affected nutrient availability soil systems. Crops reutilising winter cover crop root channels allows access to resources from distal regions in the soil horizon. However, the availability of information regarding root channel reutilisation under drought, specifically bacterial community structures and functions is unknown. In this study, we observed the changes inflicted by drought on bacterial communities in maize (Zea mays L.) rhizospheres after reusing the winter cover crop root channels. The techniques of 16S rRNA (ribosomal ribonucleic acid) gene-based microbial profiling and metaproteomics were used to study the alterations in biochemical pathways of those communities under drought at three different locations (Hohenschulen, Karkendamm and Reinshof) comprising three different soli types (Luvisol, Podzol and Phaeozem) respectively. Besides the influence of soil properties, we noticed that under drought the relative abundances of Acidobacteriota, Actinomycetota, Planctomycetota, and Pseudomonadota increased, while Chloroflexota, Methylomirabilota, Patescibacterota, and Verrucomicrobiota decreased. At drought-prone soil types Luvisol and Podzol, aerobic communities Pseudomonadota and Verrucomicrobiota increased abundance of the glyoxylate cycle as a means of conserving carbon and energy for plausible survival measures. Higher abundance of catalase-glutathione peroxidase (CAT-PER) through the methionine cycle-transsulfuration pathway possibly alleviate reactive oxygen species (ROS) levels. Overall, bacterial communities in the reused cover crop root channels respond to drought by taking mitigative measures for survival.
2025-09-22 | PXD062138 | Pride
Project description:Soil fungal communities under different crops
Project description:The functional diversity of soil microbial communities was explored for a poplar plantation, which was treated solely with biogas slurry, or combined with biochar at different fertilization intensities over several years.
Project description:Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long term metal pollution. Studying twelve sites located along two distinct gradients of metal pollution in Southern Poland revealed that both community composition (via MiSeq Illumina sequencing of 16S rRNA genes) and functional gene potential (using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level significantly impacted microbial community structure (p = 0.037), but not bacterial taxon richness. Metal pollution altered the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal resistance genes showed significant correlations with metal concentrations in soil, although no clear impact of metal pollution levels on overall functional diversity and structure of microbial communities was observed. While screens of phylogenetic marker genes, such as 16S rRNA, provided only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appeared to be a more promising strategy. This study showed that the effect of metal pollution on soil microbial communities was not straightforward, but could be filtered out from natural variation and habitat factors by multivariate statistical analysis and spatial sampling involving separate pollution gradients.
Project description:Because of severe abiotic limitations, Antarctic soils represent simplified ecosystems, where microorganisms are the principle drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report a number of highly consistent changes in microbial community structure and abundance across very disparate sub-Antarctic and Antarctic environments following three years of experimental field warming (+ 0.5-2°C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio. These alterations were linked to a significant increase in soil respiration. Furthermore, the shifts toward generalist or opportunistic bacterial communities following warming weakened the linkage between bacterial diversity and functional diversity. Warming also increased the abundance of some organisms related to the N-cycle, detected as an increase in the relative abundance of nitrogenase genes via GeoChip microarray analyses. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures, thereby potentially disrupting soil functioning. We conducted in situ warming experiments for three years using open-top chambers (OTCs) at one sub-Antarctic (Falkland Islands, 52ºS) and two Antarctic locations (Signy and Anchorage Islands, 60ºS and 67ºS respectively) (see Supplementary Fig. 1 for a map). OTCs increased annual soil temperature by an average of 0.8°C (at a depth of 5 cm), resulting in 8-43% increase in positive-degree days annually and a decrease in freeze-thaw cycle frequency by an average of 15 cycles per year (8). At each location, we included densely vegetated and bare fell-field soils in the experimental design for a total of six environments. Densely vegetated and bare environments represent two contrasting environments for Antarctic soil microorganisms, with large differences in terms of C and N inputs to soils. Massively parallel pyrosequencing (Roche 454 GS FLX Titanium) of 16S rRNA gene amplicons was used to follow bacterial diversity and community composition [GenBank Accession Numbers: HM641909-HM744649], and functional gene microarrays (GeoChip 2.0)(11) were used to assess changes in functional gene distribution. Bacterial and fungal communities were also quantified using real-time PCR.