Project description:PGC-1α (Peroxisome proliferator-activated receptor gamma coactivator-1alpha) coactivators regulate adaptive gene expression in response to challenges such as cold exposure, fasting, or physical exercise to balance energy supply and demand. Transcription of a single PGC-1α gene produces different isoforms (e.g. PGC-1α1 to α4) with different biological functions. We aimed to characterize the nuclear interactome for each PGC-1α variant, in particular the transcription factors they bind to regulate gene expression. This was done by generating GST-fusions of all PGC-1a variants, expressed in an insect cell system. These were used to capture associated protein complexes from HeLa nuclear extracts.
Project description:In the present study we have studied the mechanistic and functional aspects of NCoR1 function in mouse skeletal muscle. NCoR1 muscle-specific knockout mice exhibited an increased oxidative metabolism. Global gene expression analysis revealed a high overlap between the effects of NCoR1 deletion and peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1alpha (PGC-1alpha) overexpression on oxidative metabolism in skeletal muscle. The repressive effect of NCoR1 on oxidative phosphorylation gene expression specifically antagonizes PGC-1alpha-mediated coactivation of ERRalpha. We therefore delineated the molecular mechanism by which a transcriptional network controlled by corepressor and coactivator proteins determines the metabolic properties of skeletal muscle, thus representing a potential therapeutic target for metabolic diseases.
Project description:In the present study we have studied the mechanistic and functional aspects of NCoR1 function in mouse skeletal muscle. NCoR1 muscle-specific knockout mice exhibited an increased oxidative metabolism. Global gene expression analysis revealed a high overlap between the effects of NCoR1 deletion and peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1alpha (PGC-1alpha) overexpression on oxidative metabolism in skeletal muscle. The repressive effect of NCoR1 on oxidative phosphorylation gene expression specifically antagonizes PGC-1alpha-mediated coactivation of ERRalpha. We therefore delineated the molecular mechanism by which a transcriptional network controlled by corepressor and coactivator proteins determines the metabolic properties of skeletal muscle, thus representing a potential therapeutic target for metabolic diseases. Gene expression of a total of 20 gastrocnemius samples from control (CON, n = 5), NCoR1 muscle-specific knockout (NCoR1 MKO, n = 5), wild type (WT, n = 5) and PGC-1alpha muscle-specific transgenic (PGC-1alpha mTg, n = 5) adult male mice was analyzed using GeneChip® Gene 1.0 ST Array System (Affymetrix). NCoR1 MKO and PGC-1alpha mTg samples were compared to CON and WT samples, respectively.
Project description:Human rhinoviruses (HRV) are common cold viruses associated with exacerbations of lower airways diseases. Although viral induced epithelial damage mediates inflammation, the molecular mechanisms responsible for airway epithelial damage and dysfunction remain undefined. Using experimental HRV infection studies in humans and highly differentiated human bronchial epithelial cells grown at air-liquid interface (ALI), we examined the links between viral host defense, cellular metabolism, and epithelial barrier function. We observed that early HRV-C15 infection induced a transitory barrier-protective metabolic state characterized by glycolysis that ultimately becomes exhausted as the infection progresses and leads to cellular damage. Pharmacological promotion of glycolysis induced ROS-dependent upregulation of the mitochondrial metabolic regulator, peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha), thereby restoring epithelial barrier function, improving viral defense, and attenuating disease pathology. Therefore, PGC-1alpha regulates a metabolic pathway essential to host defense that can be therapeutically targeted to rescue airway epithelial barrier dysfunction and potentially prevent severe respiratory complications or secondary bacterial infections.
Project description:Mutations in the gene encoding lipin 1 cause hepatic steatosis in fld mice, a genetic model of lipodystrophy. Lipin 1 appears to be highly involved in the control of fatty acid metabolism. Lipin 1 is most often located in the nucleus, but other studies suggest that lipin also has effects in the cytoplasm. However, the molecular function of lipin 1 is unclear. To evaluate the effects of activation of the lipin 1 system in liver, lipin 1beta was overexpressed in mouse liver using an adenoviral vector. We found that lipin 1 overexpression increased the expression of many genes involved in mitochondrial fatty acid oxidation while repressing expression of genes involved in lipogenesis. We believe that lipin is a transcriptional coactivator of the peroxisome proliferator-activated receptor (PPAR) complex. However, the many molecular aspects of its function remain unclear. Abstract of published manuscript follows:; Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway.Finck BN, Gropler MC, Chen Z, Leone TC, Croce MA, Harris TE, Lawrence JC Jr, Kelly DP. Center for Cardiovascular Research and Washington University School of Medicine, St. Louis, Missouri 63110; Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110. Perturbations in hepatic lipid homeostasis are linked to the development of obesity-related steatohepatitis. Mutations in the gene encoding lipin 1 cause hepatic steatosis in fld mice, a genetic model of lipodystrophy. However, the molecular function of lipin 1 is unclear. Herein, we demonstrate that the expression of lipin 1 is induced by peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator 1alpha (PGC-1alpha), a transcriptional coactivator controlling several key hepatic metabolic pathways. Gain-of-function and loss-of-function strategies demonstrated that lipin selectively activates a subset of PGC-1alpha target pathways, including fatty acid oxidation and mitochondrial oxidative phosphorylation, while suppressing the lipogenic program and lowering circulating lipid levels. Lipin activates mitochondrial fatty acid oxidative metabolism by inducing expression of the nuclear receptor PPARalpha, a known PGC-1alpha target, and via direct physical interactions with PPARalpha and PGC-1alpha. These results identify lipin 1 as a selective physiological amplifier of the PGC-1alpha/PPARalpha-mediated control of hepatic lipid metabolism. Experiment Overall Design: Adult male C57BL6 mice were injected with adenovirus driving expression of mouse lipin 1beta or green fluorescent protein (GFP). Mice were recovered and sacrificed 6 days after injection. Total RNA was isolated and analyzed using Affymetrix microarray.
Project description:Mutations in the gene encoding lipin 1 cause hepatic steatosis in fld mice, a genetic model of lipodystrophy. Lipin 1 appears to be highly involved in the control of fatty acid metabolism. Lipin 1 is most often located in the nucleus, but other studies suggest that lipin also has effects in the cytoplasm. However, the molecular function of lipin 1 is unclear. To evaluate the effects of activation of the lipin 1 system in liver, lipin 1beta was overexpressed in mouse liver using an adenoviral vector. We found that lipin 1 overexpression increased the expression of many genes involved in mitochondrial fatty acid oxidation while repressing expression of genes involved in lipogenesis. We believe that lipin is a transcriptional coactivator of the peroxisome proliferator-activated receptor (PPAR) complex. However, the many molecular aspects of its function remain unclear. Abstract of published manuscript follows: Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway.Finck BN, Gropler MC, Chen Z, Leone TC, Croce MA, Harris TE, Lawrence JC Jr, Kelly DP. Center for Cardiovascular Research and Washington University School of Medicine, St. Louis, Missouri 63110; Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110. Perturbations in hepatic lipid homeostasis are linked to the development of obesity-related steatohepatitis. Mutations in the gene encoding lipin 1 cause hepatic steatosis in fld mice, a genetic model of lipodystrophy. However, the molecular function of lipin 1 is unclear. Herein, we demonstrate that the expression of lipin 1 is induced by peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator 1alpha (PGC-1alpha), a transcriptional coactivator controlling several key hepatic metabolic pathways. Gain-of-function and loss-of-function strategies demonstrated that lipin selectively activates a subset of PGC-1alpha target pathways, including fatty acid oxidation and mitochondrial oxidative phosphorylation, while suppressing the lipogenic program and lowering circulating lipid levels. Lipin activates mitochondrial fatty acid oxidative metabolism by inducing expression of the nuclear receptor PPARalpha, a known PGC-1alpha target, and via direct physical interactions with PPARalpha and PGC-1alpha. These results identify lipin 1 as a selective physiological amplifier of the PGC-1alpha/PPARalpha-mediated control of hepatic lipid metabolism. Keywords: response to lipin 1 activation
Project description:We investigated gene expression changes in the cardiac tissue of a transgenic mouse model overexpressing Peroxisome proliferator-activated receptor gamma coactivator 1-alpha isoform 4 (PGC-1α4) specifically in cardiomyocytes at the neonatal stage and at the age of four weeks.
Project description:Skeletal muscle has an enormous plastic potential to adapt to various external and internal
perturbations. While morphological changes in endurance-trained muscles are well-described,
the molecular underpinnings of training adaptation are poorly understood. We aimed at
defining the molecular signature of a trained muscle and unraveling the training status-
dependent responses to an acute bout of exercise. Our results reveal that even though at
baseline, the transcriptomes of trained and untrained muscles are very similar, training status
substantially affects the transcriptional response to an acute challenge, both quantitatively and
qualitatively, in part mediated by epigenetic modifications. Furthermore, proteomic changes
were elicited by different transcriptional modalities. Finally, transiently activated factors such
as the peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) are indispensable
for normal training adaptation. Together, these results provide a molecular framework of the
temporal and training status-dependent exercise response that defines muscle plasticity in
training.
Project description:Sarcopenia, the age-related loss of skeletal muscle mass and function, can dramatically impinge on quality of life and mortality. While mitochondrial dysfunction and imbalanced proteostasis are recognized as hallmarks of sarcopenia, the regulatory and functional link between these processes is underappreciated and unresolved. We therefore investigated how mitochondrial proteostasis, a crucial process that coordinates the expression of nuclear- and mitochondrial-encoded mitochondrial proteins with supercomplex formation and respiratory activity, is affected in skeletal muscle aging. Intriguingly, a robust mitochondrial translation impairment was observed in sarcopenic muscle, which is regulated by the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1alpha) with the estrogen-related receptor alpha (ERRalpha). Exercise, a potent inducer of PGC-1alpha activity, rectifies age-related reduction in mitochondrial translation, in conjunction with quality control pathways. These results highlight the importance of mitochondrial proteostasis in muscle aging, and elucidate regulatory interactions that underlie the powerful benefits of physical activity in this context.