Project description:Transcriptional profiling of human papillary thyroid cancer cells comparing control untreated BCPAP cells with BCPAP cells transfected with miR-145b-5p mimic. Two-condition experiment, BCPAP cells vs. miR-146b-5p transfexted BCPAP cells. Biological replicates: 1 control sample, 1 transfected sample.
Project description:Transcriptional profiling of human papillary thyroid cancer cells comparing control untreated BCPAP cells with BCPAP cells transfected with miR-145b-5p mimic.
Project description:To comprehensively characterize microRNAs (miRNA) expression and their target genes in thyroid cancer, we performed next-generation sequencing expression analysis of this disease. Recent studies have found that only the most abundant microRNAs mediate significant target suppression. We sequenced small RNA from 8 papillary thyroid carcinomas (PTC) with paired samples of normal thyroid tissue. We found that only a small set of abundant miRNAs are differentially expressed after pair-wise comparison (12 upregulated and 8 downregulated) reaching the minimum threshold amount to repress target mRNAs. We integrated computational prediction of potential targets and mRNA sequencing from the paired normal and tumor thyroid tissues from the same eight patients with PTC. The integrated analyses identified a master microRNA regulatory network in PTC that is involved in essential biological processes such as thyroid differentiation. As both mature products of miR-146b (miR-146b-5p and -3p) were among the most abundant upregulated in tumors, we unveil their target genes and found that miR-146b-3p specifically binds to the 3`UTR of PAX8 and NIS, leading to an impaired translation of the proteins and subsequently decreasing the iodide uptake of the cells. Furthermore, we show that mir-146b and PAX8 regulate each other, describing a novel regulatory circuit that determines the differentiated phenotype of PTC. In conclusion, our integrative genomic analysis uncovers the target genes of two of the most upregulated miRNAs and highlights the importance of a miR-146b3p-PAX8-NIS regulatory circuit that determines thyroid differentiation in thyroid cancer. Samples from Papillary Thyroid Carcinoma tumors (n=8) and contralateral normal thyroid tissue from the same patient (n=8) were collected at the Biobank of the Hospital Universitario La Paz (Madrid, Spain). The clinical characteristics of patients are summarized in Table S1. Surgically removed tissues were quickly frozen in liquid nitrogen until analysis. The samples were snap frozen on dry ice and stored at -80°C.
Project description:3 papillary thyroid cancer cell lines were compared, treated with Y15 to untreated. 1 million cells of each papillary thyroid cell line (TPC1, K1, BCPAP) were plated, treated 24 hours later with 10uM Y15, and collected 24 hours later by trypsinization.
Project description:We performed gene expression profiling in the human papillary thyroid carcinoma (PTC) derived cell line BCPAP harboring BRAFV600E mutation following the treatment with BRAF selective inhibitors.
Project description:To comprehensively characterize microRNAs (miRNA) expression and their target genes in thyroid cancer, we performed next-generation sequencing expression analysis of this disease. Recent studies have found that only the most abundant microRNAs mediate significant target suppression. We sequenced small RNA from 8 papillary thyroid carcinomas (PTC) with paired samples of normal thyroid tissue. We found that only a small set of abundant miRNAs are differentially expressed after pair-wise comparison (12 upregulated and 8 downregulated) reaching the minimum threshold amount to repress target mRNAs. We integrated computational prediction of potential targets and mRNA sequencing from the paired normal and tumor thyroid tissues from the same eight patients with PTC. The integrated analyses identified a master microRNA regulatory network in PTC that is involved in essential biological processes such as thyroid differentiation. As both mature products of miR-146b (miR-146b-5p and -3p) were among the most abundant upregulated in tumors, we unveil their target genes and found that miR-146b-3p specifically binds to the 3`UTR of PAX8 and NIS, leading to an impaired translation of the proteins and subsequently decreasing the iodide uptake of the cells. Furthermore, we show that mir-146b and PAX8 regulate each other, describing a novel regulatory circuit that determines the differentiated phenotype of PTC. In conclusion, our integrative genomic analysis uncovers the target genes of two of the most upregulated miRNAs and highlights the importance of a miR-146b3p-PAX8-NIS regulatory circuit that determines thyroid differentiation in thyroid cancer.
Project description:TCP1 papillary thyroid carcinoma cells were plated at 100,000 cells/well in a 6-well plate and transfected with 10nM of a synthetic pre-miR-129-5p or a negative pre-miRNA using Lipofectamine RNAiMAX reagent. RNA samples were harvested at 24 and 48 hours post-transfection.
Project description:An ideal cancer gene therapy would selectively destroy the cancer cells without affecting much the healthy tissue. This would be possible if and only if the cancer and normal cells of the tumor are governed by distinct gene master regulators (GMRs). Logic dictates that, while being strongly protected by the homeostatic mechanisms, expression of a GMR governs the phenotype by modulating major functional pathways through controlling the expression of the involved genes. We determined the GMRs of the standard papillary (BCPAP) and anaplastic (8505C) thyroid cancer cell lines. The hierarchy of the known biomarkers was established based on their gene commanding height (GCH), an original measure combining the expression control and coordination with expression of other genes. We found that the sets of the GMRs are largely different in the two thyroid cancer cell lines, indicatibg that each type of thyroid cancer needs a different gene-targeting therapy. In this experiment, we determined the transcriptomic effects of the stable transfection of PANK2 gene In the papillary (BCPAP) and anaplastic (8505C) thyroid cancer cell lines. PANK2 was selected because it has significantly different GCHs in the two cell lines: 44.64 in BCPAP and 3.61 in 8505C. The significantly more up- and down-regulated genes in the transfected BCPAP than in the transfected 8505C cells compared to their untransfected counterparts validated the theory and indicated the usefulness of our personalized gene therapy approach.
Project description:An ideal cancer gene therapy would selectively destroy the cancer cells without affecting much the healthy tissue. This would be possible if and only if the cancer and normal cells of the tumor are governed by distinct gene master regulators (GMRs). Logic dictates that, while being strongly protected by the homeostatic mechanisms, expression of a GMR governs the phenotype by modulating major functional pathways through controlling the expression of the involved genes. We determined the GMRs of the standard papillary (BCPAP) and anaplastic (8505C) thyroid cancer cell lines. The hierarchy of the known biomarkers was established based on their gene commanding height (GCH), an original measure combining the expression control and coordination with expression of other genes. We found that the sets of the GMRs are largely different in the two thyroid cancer cell lines, indicatibg that each type of thyroid cancer needs a different gene-targeting therapy. In this experiment, we determined the transcriptomic effects of the stable transfection of DDX19B gene In the papillary (BCPAP) and anaplastic (8505C) thyroid cancer cell lines. DDX19B was selected because it has significantly different GCHs in the two cell lines: 1.64 in BCPAP and 6.03 in 8505C. The significantly more up- and down-regulated genes in the transfected 8505C than in the transfected BCPAP cells compared to their untransfected counterparts validated the theory and indicated the usefulness of our personalized gene therapy approach.
Project description:We show that numerous miRNAs are transcriptionally up-regulated in papillary thyroid carcinoma (PTC) tumors compared with unaffected thyroid tissue. Among the predicted target genes of the three most upregulated miRNAs (miRs 221, 222 and 146b), only less than 15% showed significant downexpression in transcript level between tumor and unaffected tissue. The KIT gene which is known to be downregulated by miRNAs 221 and 222 displayed dramatic loss of transcript and protein in those tumors that had abundant mir-221, mir-222, and mir-146b transcript. Keywords: Disease state analysis